Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202401268, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38785225

RESUMO

Borane catalysis has emerged as a powerful technology in epoxide polymerization. Still, the structure-activity correlations for these catalysts are not fully understood to date, especially regarding compounds with nonionic backbones. Thus, in this work, 13 different borane catalysts of this respective type are described and investigated for their epoxide oligomerization and polymerization performance, using propylene oxide (PO), 1-butylene oxide (BO) and allyl glycidyl ether (AGE) as monomers. Structurally, special emphasis is put on catalysts with different linker lengths and linker flexibilities as well as the introduction of more than two borane functionalities. Importantly, this screening is conducted both under typical polymerization conditions as well as under the chain transfer agent (CTA)-rich conditions relevant for large-scale production. It is found that suitable preorganization of the borane groups, such as present in biphenyl derivatives, offers a simple route to high-performing catalysts and quantitative monomer conversion of the investigated epoxides. Furthermore, it is demonstrated that a diborane-catalyzed oligomerization can be kept active over weeks, whereby repeated addition of monomer batches (14 steps) constantly results in full conversion and well-defined oligoethers, underlining the practical potential of this method. The absence of co-initiating counter ions is suggested as an inherent advantage of nonionic catalysts.

2.
Macromol Rapid Commun ; : e2300716, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497903

RESUMO

Mesoionic N-heterocyclic olefins (mNHOs) have recently emerged as a novel class of highly nucleophilic and super-basic σ-donor compounds. Making use of these properties in synthetic polymer chemistry, it is shown that a combination of a specific mNHO and a Mg-based Lewis acid (magnesium bis(hexamethyldisilazide), Mg(HMDS)2) delivers poly(propylene oxide) in quantitative yields from the polymerization of the corresponding epoxide (0.1 mol% mNHO loading). The initiation mechanism involves monomer activation by the Lewis acid and direct ring-opening of the monomer by nucleophilic attack of the mNHO, forming a zwitterionic propagating species. Modulation of the mNHO properties is thereby a direct tool to impact initiation efficiency, revealing a sterically unencumbered triazole-derivative as particularly useful. The joint application of mNHOs together with borane-type Lewis acids is also outlined, resulting in high conversions and fast polymerization kinetics. Importantly, while molar mass distributions remain relatively broad, indicating faster propagation than initiation, the overall molar masses are significantly lower than found in the case of regular NHOs, underlining the increased nucleophilicity and ensuing improved initiation efficiency of mNHOs.

3.
Macromolecules ; 57(1): 317-327, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222027

RESUMO

Sterically-stabilized diblock copolymer nanoparticles comprising poly(propylene oxide) (PPO) cores are prepared via reverse sequence polymerization-induced self-assembly (PISA) in aqueous solution. N,N'-Dimethylacrylamide (DMAC) acts as a cosolvent for the weakly hydrophobic trithiocarbonate-capped PPO precursor. Reversible addition-fragmentation chain transfer (RAFT) polymerization of DMAC is initially conducted at 80% w/w solids with deoxygenated water. At 30-60% DMAC conversion, the reaction mixture is diluted to 5-25% w/w solids. The PPO chains become less solvated as the DMAC monomer is consumed, which drives in situ self-assembly to form aqueous dispersions of PPO-core nanoparticles of 120-190 nm diameter at 20 °C. Such RAFT polymerizations are well-controlled (Mw/Mn ≤ 1.31), and more than 99% DMAC conversion is achieved. The resulting nanoparticles exhibit thermoresponsive character: dynamic light scattering and transmission electron microscopy studies indicate the formation of more compact spherical nanoparticles of approximately 33 nm diameter on heating to 70 °C. Furthermore, 15-25% w/w aqueous dispersions of such nanoparticles formed micellar gels that undergo thermoreversible (de)gelation on cooling to 5 °C.

4.
Chem Commun (Camb) ; 59(74): 11069-11072, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37644875

RESUMO

Chiral diborane polymerization catalysts with 3,3'-disubstituted binaphthol-backbones are presented. These compounds deliver isotactic poly(propylene oxide) from racemic monomer with isotactoc diad (m) and triad (mm) placements of up to 92% and >80%, respectively. The resulting polyether is well-defined, of high molar mass and semi-crystalline.

5.
Chem Sci ; 13(36): 10939-10943, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36320696

RESUMO

It is demonstrated that stereoselective polymerization of epoxides, long a domain of metal-based compounds, can also be achieved via the application of organocatalysts. A simple two-step synthesis starting from widely available 1,1'-bi-2-naphthol (BINOL) backbones yields diboranes which, in tandem with organobases, deliver isotactic-enriched (it) polyethers from the homopolymerization of racemic propylene oxide (PO) and other epoxides. Thereby, isotactic diad contents of up to 88% can be achieved, resulting in well-defined (1.1 < D M < 1.3) polyethers with high molar masses (M n > 100 000 g mol-1). Notably, it is also possible to grow it-enriched sequences of PPO on aliphatic polyester-type initiators, thus enabling the incorporation of stereocontrolled polyether blocks in more complex polymer architectures. It is expected that this ability will greatly benefit the preparation of polyether-containing additives. The BINOL-type diboranes can be readily modified, suggesting further potential as a platform from which optimized catalysts can be developed.

6.
ACS Polym Au ; 2(5): 371-379, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36855582

RESUMO

Herein, N-heterocyclic olefins (NHOs) are utilized as catalysts for the ring-opening polymerization (ROP) of functional aliphatic carbonates. This emerging class of catalysts provides high reactivity and rapid conversion. Aiming for the polymerization of monomers with high side chain functionality, six-membered carbonates derived from 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) served as model compounds. Tuning the reactivity of NHO from predominant side chain transesterification at room temperature toward ring-opening at lowered temperatures (-40 °C) enables controlled ROP. These refined conditions give narrowly distributed polymers of the hydrophobic carbonate 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one (MTC-OBn) (D < 1.30) at (pseudo)first-order kinetic polymerization progression. End group definition of these polymers demonstrated by mass spectrometry underlines the absence of side reactions. For the active ester monomer 5-methyl-5-pentafluorophenyloxycarbonyl-1,3-dioxane-2-one (MTC-PFP) with elevated side chain reactivity, a cocatalysis system consisting of NHO and the Lewis acid magnesium iodide is required to retune the reactivity from side chains toward controlled ROP. Excellent definition of the products (D < 1.30) and mass spectrometry data demonstrate the feasibility of this cocatalyst approach, since MTC-PFP has thus far only been polymerized successfully using acidic catalysts with moderate control. The broad feasibility of our findings was further demonstrated by the synthesis of block copolymers for bioapplications and their successful nanoparticular assembly. High tolerability of NHO in vitro with concentrations ranging up to 400 µM (equivalent to 0.056 mg/mL) further emphasize the suitability as a catalyst for the synthesis of bioapplicable materials. The polycarbonate block copolymer mPEG44-b-poly(MTC-OBn) enables physical entrapment of hydrophobic dyes in sub-20 nm micelles, whereas the active ester block copolymer mPEG44-b-poly(MTC-PFP) is postfunctionalizable by covalent dye attachment. Both block copolymers thereby serve as platforms for physical or covalent modification of nanocarriers for drug delivery.

7.
Biomacromolecules ; 21(7): 2661-2669, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32421335

RESUMO

A dual catalytic setup, consisting of a range of different Lewis bases (including N-heterocyclic olefins, phosphazenes and nitrogen bases) and simple Lewis acids (such as LiCl, MgF2, BEt3), was employed to prepare poly(ether carbonate)s from five-membered, cyclic ethylene carbonate (EC). Polymerizations were conducted under microwave irradiation at T = 160-200 °C with low catalyst loading (0.4-0.005 mol % regarding organobases) in the bulk, enabling access to molar masses of up to 10 000 g/mol. A combination of kinetic investigation, GPC, MALDI-ToF MS, and NMR analysis underlines that the polymerization can be highly effective (TON up to >17 000) but side reactions still occur, resulting in a moderately controlled process. In contrast to traditional procedures, where increased ether contents can typically only be realized by higher temperatures and longer reaction times (at the cost of much reduced molar masses), the dual catalytic approach reveals the choice of the Lewis acid as a more effective tuning parameter for this property. Thus, while carbonate contents of up to 30% are possible, application of LiCl as cocatalyst provides a polymer with high ether content (90-99%, Mn = 800-10 000 g/mol), a finding that also seems to apply for other lithium salts. Thus, using this operationally simple setup and EC as a cheap feedstock, a copolymer which is essentially a degradable poly(ethylene glycol) can be prepared in a one-pot, one-step approach. Notably, the obtained low-carbonate content allows for the preparation of semicrystalline poly(ether carbonate), further underlining the "PEG-likeness" of the material.


Assuntos
Dioxolanos , Polímeros , Polietilenoglicóis , Polimerização
8.
RSC Adv ; 10(71): 43389-43393, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-35519681

RESUMO

Triethyl borane (Et3B), in combination with phosphazene-type superbases, has recently emerged as a powerful co-catalyst for the anionic polymerization of epoxides. Here, it is demonstrated that the monomer-activating property of Et3B can also compensate for the application of much gentler organobases. This not only results in simpler setups, but also significantly reduces nucleophilicity/basicity-derived side reactions. Notably, this principle applies to such a degree that simple 4-dimethylaminopyridine (DMAP) or 1,4-diazabicyclo[2.2.2]octane (DABCO) can serve to polymerize propylene oxide (PO). With suitable initiators, this results for example in very well-defined block copolyethers (Ð M ≤ 1.03) without requiring work-up to remove side products such as PPO homopolymer. Performance correlates nicely with the corresponding organobase proton affinities (PAs), and a limiting PA of 220-230 kcal mol-1 was identified for successful PO polymerization.

9.
Chem Commun (Camb) ; 55(78): 11658-11670, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31517349

RESUMO

N-Heterocyclic olefins (NHOs), a recently (re-)discovered type of electron-rich, polar alkene, are comprehensively presented. Along with synthetic aspects and chemical properties, special emphasis is put on the multi-faceted impact NHOs already have had on catalysis. This is discussed along the lines of small molecule organocatalysis, organo- and metal-assisted polymerization and of the understanding and application of NHO-ligated organometallic complexes. Highlighted are the strong basicity of NHOs ("superbases"), their high nucleophilicity and the design principles to tailor NHO (organo-)catalysts. It is demonstrated that NHOs can complement, and in many cases out-perform, the much better established N-heterocyclic carbene-based systems. Examples include among others CO2-sequestration, the polymerization of lactones and epoxides or the transfer hydrogenation of carbonyls. Further, the unique ability to selectively address basic or nucleophilic reaction pathways via NHO-mediation is detailed, as is the bonding situation in NHO-metal complexes and the ability of the olefin to act as an electronically flexible ligand.

10.
Angew Chem Int Ed Engl ; 58(31): 10737-10741, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31099454

RESUMO

A dual catalytic setup based on N-heterocyclic olefins (NHOs) and magnesium bis(hexamethyldisilazide) (Mg(HMDS)2 ) was used to prepare poly(propylene oxide) with a molar mass (Mn ) >500 000 g mol-1 , in some cases even >106  g mol-1 , as determined by GPC/light scattering. This is achieved by combining the rapid polymerization characteristics of a zwitterionic, Lewis pair type mechanism with the efficient epoxide activation by the MgII species. Transfer-to-monomer, traditionally frustrating attempts at synthesizing polyethers with a high degree of polymerization, is practically removed as a limiting factor by this approach. NMR and MALDI-ToF MS experiments reveal key aspects of the proposed mechanism, whereby the polymerization is initiated via nucleophilic attack by the NHO on the activated monomer, generating a zwitterionic species. This strategy can also be extended to other epoxides, including functionalized monomers.

11.
J Org Chem ; 84(4): 2209-2218, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30633507

RESUMO

The proton affinity (PA) of a range of structurally different N-heterocycles with an exocyclic double bond (= N-heterocyclic olefins, NHOs) has been determined using DFT calculations on the BLYP/def2-TZVPP level. It was found that NHOs belong to the upper end of the superbasicity scale, covering PA values from 262 to 296 kcal/mol. Different types of NHOs are compared with each other and with frequently employed organocatalysts. To boost PA, (a) the ability to delocalize the positive charge and (b) steric pressure/ring strain which can be relieved after protonation were identified as key tuning parameters. Importantly, by analyzing PA alongside partial charges and molecular electrostatic potentials, it is shown that an increase of double bond polarization is not a necessary prerequisite for high PA. In contrast, the more basic, more sterically congested NHOs minimize unfavorable interactions by partly pyramidalyzing the nitrogen atoms, rendering the olefinic bond less electron rich and less polarized. These findings are in excellent agreement with experimental evidence on NHO catalysis, not only providing guidelines for a more rational design regarding PA/basicity but also suggesting that NHOs could be specifically tailored toward either nucleophilic or base-type reaction pathways.

12.
Biodivers Data J ; (6): e22236, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29674935

RESUMO

BACKGROUND: Bombycoidea is an ecologically diverse and speciose superfamily of Lepidoptera. The superfamily includes many model organisms, but the taxonomy and classification of the superfamily has remained largely in disarray. Here we present a global checklist of Bombycoidea. Following Zwick (2008) and Zwick et al. (2011), ten families are recognized: Anthelidae, Apatelodidae, Bombycidae, Brahmaeidae, Carthaeidae, Endromidae, Eupterotidae, Phiditiidae, Saturniidae and Sphingidae. The former families Lemoniidae and Mirinidae are included within Brahmaeidae and Endromidae respectively. The former bombycid subfamilies Oberthueriinae and Prismostictinae are also treated as synonyms of Endromidae, and the former bombycine subfamilies Apatelodinae and Phitditiinae are treated as families. NEW INFORMATION: This checklist represents the first effort to synthesize the current taxonomic treatment of the entire superfamily. It includes 12,159 names and references to their authors, and it accounts for the recent burst in species and subspecies descriptions within family Saturniidae (ca. 1,500 within the past 10 years) and to a lesser extent in Sphingidae (ca. 250 species over the same period). The changes to the higher classification of Saturniidae proposed by Nässig et al. (2015) are rejected as premature and unnecessary. The new tribes, subtribes and genera described by Cooper (2002) are here treated as junior synonyms. We also present a new higher classification of Sphingidae, based on Kawahara et al. (2009), Barber and Kawahara (2013) and a more recent phylogenomic study by Breinholt et al. (2017), as well as a reviewed genus and species level classification, as documented by Kitching (2018).

13.
Molecules ; 23(2)2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29462873

RESUMO

Lewis pair polymerization employing N-Heterocyclic olefins (NHOs) and simple metal halides as co-catalysts has emerged as a useful tool to polymerize diverse lactones. To elucidate some of the mechanistic aspects that remain unclear to date and to better understand the impact of the metal species, computational methods have been applied. Several key aspects have been considered: (1) the formation of NHO-metal halide adducts has been evaluated for eight different NHOs and three different Lewis acids, (2) the coordination of four lactones to MgCl2 was studied and (3) the deprotonation of an initiator (butanol) was investigated in the presence and absence of metal halide for one specific Lewis pair. It was found that the propensity for adduct formation can be influenced, perhaps even designed, by varying both organic and metallic components. Apart from the NHO backbone, the substituents on the exocyclic, olefinic carbon have emerged as interesting tuning site. The tendency to form adducts is ZnCl2 > MgCl2 > LiCl. If lactones coordinate to MgCl2, the most likely binding mode is via the carbonyl oxygen. A chelating coordination cannot be ruled out and seems to gain importance upon increasing ring-size of the lactone. For a representative NHO, it is demonstrated that in a metal-free setting an initiating alcohol cannot be deprotonated, while in the presence of MgCl2 the same process is exothermic with a low barrier.


Assuntos
Cicloparafinas/química , Lactonas/química , Polímeros/química , Catálise , Metais/química , Modelos Teóricos , Estrutura Molecular , Polimerização
14.
Chem Commun (Camb) ; 54(18): 2220-2223, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29308472

RESUMO

Under mild conditions, PPO-PEO-PPO ("reverse Pluronics") and PBO-PEO-PBO copolyether were generated by way of N-heterocyclic olefin-based organocatalysis. Reverse Pluronics with molar masses > 20 000 g mol-1 could be synthesized with excellent control (DM ≤ 1.03) and were converted into (ordered) mesoporous carbons via organic self-assembly to showcase the need for tailor-made copolymer as structure-directing agent.

15.
Chem Commun (Camb) ; 52(36): 6099-102, 2016 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-27068323

RESUMO

The synthesis, single crystal X-ray structure and activity in olefin metathesis of novel anionic tungsten imido alkylidene complexes [1,3-bis-(2,4,6-trimethylphenyl)imidazolinium](+) [W(N-2,6-iPr2C6H3)(CHCMe2Ph)(2,5-Me2Pyr)2Cl](-), [1,3-bis-(2,4,6-trimethylphenyl)imidazolinium](+) [W(N-2,6-iPr2C6H3)(CHCMe2Ph)(2,5Me2Pyr)2(OC6F5)](-), and [1,3-bis-(2,6-diisopropylphenyl)imidazolinium](+) [W(N-2,6-iPr2C6H3)(CHCMe2Ph)(2,5-Me2Pyr)Cl2](-) are reported. Additionally, the first example of a bis(N-heterocyclic olefinium) alkylidene tungstate, W(N-2,6-iPr2C6H3)(CHCMe2Ph)(2-methylene-1,3,4,5-tetramethyl-imidazoline)2(OTf)2, is described, including preparation, crystal structure and catalytic activity.

16.
ACS Macro Lett ; 5(1): 134-138, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35668587

RESUMO

In this work, the activity of N-heterocyclic olefins (NHOs), a newly emerging class of organopolymerization catalyst, is investigated to affect the metal-free polymerization of lactones and trimethylene carbonate (TMC). A decisive structure-activity relationship is revealed. While catalysts of the simplest type bearing an exocyclic ═CH2 moiety polymerize l-lactide (l-LA) and δ-valerolactone (δ-VL) in a non-living and non-quantitative manner, the introduction of methyl substituents on the exocyclic carbon radically changes this behavior. 2-Isopropylidene-1,3,4,5-tetramethylimidazoline is found to be highly active for a range of monomers such as l-LA, δ-VL, ε-caprolactone (ε-CL), and TMC, with quantitative conversion occurring within seconds with catalyst loadings of just 0.2 mol %. The high activity of this NHO further enables the ring-opening polymerization (ROP) of the macrolactone ω-pentadecalactone (PDL). However, this broad applicability is offset by a lack of control over the polymerizations, including side reactions as a consequence of its strong basicity. To overcome this, a saturated, imidazolinium-derived analogue was synthesized and subsequently demonstrated to possess a harnessed reactivity which enables it to polymerize both l-LA and TMC in a controlled manner (DM < 1.2). NMR spectroscopic and MALDI-ToF MS experiments highlight the differences in polymerization pathways for 2-methylene-1,3,4,5-tetramethylimidazoline, in which the exocyclic carbon is not substituted, in contrast to 2-isopropylidene-1,3,4,5-tetramethylimidazoline, with the former operating via its nucleophilicity and the latter acting as a base with enolizable δ-VL.

17.
Beilstein J Org Chem ; 11: 2261-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26664650

RESUMO

The polymerization of octamethylcyclotetrasiloxane (D4) is investigated using several five-, six- and seven-membered N-heterocyclic carbenes (NHCs). The catalysts are delivered in situ from thermally susceptible CO2 adducts. It is demonstrated that the polymerization can be triggered from a latent state by mild heating, using the highly nucleophilic 1,3,4,5-tetramethylimidazol-2-ylidene as organocatalyst. This way, high molecular weight PDMS is prepared (up to >400 000 g/mol, 1.6 < Ð M < 2.5) in yields >95%, using low catalyst loadings (0.2-0.1 mol %). Furthermore, the results suggest that a nucleophilic, zwitterionic mechanism is in operation, in preference to purely anionic polymerization.

18.
J Am Chem Soc ; 137(45): 14439-45, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26505677

RESUMO

Much work has been directed to the design of complex single-site catalysts for ring-opening polymerization (ROP) to enhance both activity and selectivity. More simply, however, cooperative effects between Lewis acids and organocatalytic nucleophiles/Lewis bases provide a powerful alternative. In this study we demonstrate that the combination of N-heterocyclic carbenes, 1,8-diazabicycloundec-7-ene (DBU) and 4-dimethylaminopyridine (DMAP) with simple Lewis acids enables the ROP of the macrolactone pentadecalactone in a rapid and efficient manner. Remarkably, regardless of the nature of the nucleophile, the order of activity was observed to be MgX2 ≫ YCl3 ≫ AlCl3 and MgI2 > MgBr2 > MgCl2 in every case. The minimal influence of the organobase on polymerization activity allows for the use of simple and inexpensive precursors. Furthermore, extension of the study to other cyclic (di)ester monomers reveals the choice of Lewis acid to lead to monomer selective ROP activity and hence control over copolymer composition by choice of Lewis acid. This approach could lead to the realization of complex polymer structures with tunable physical properties from simple catalyst combinations.

19.
Angew Chem Int Ed Engl ; 54(33): 9550-4, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26136456

RESUMO

The metal-free polymerization of propylene oxide (PO) using a special class of alkene­N-heterocyclic olefins (NHOs)­as catalysts is described. Manipulation of the chemical structure of the NHO organocatalyst allows for the preparation of the poly(propylene oxide) in high yields with high turnover (TON>2000), which renders this the most active metal-free system for the polymerization of PO reported to date. The resulting polyether displays predictable end groups, molar mass, and a low dispersity (D(M)<1.09). NHOs with an unsaturated backbone are essential for polymerization to occur, while substitution at the exocyclic carbon atom has an impact on the reaction pathway and ensures the suppression of side reactions.

20.
Macromol Rapid Commun ; 35(7): 682-701, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24519912

RESUMO

Various approaches to latent polymerization processes are described. In order to highlight recent advances in this field, the discussion is subdivided into chapters dedicated to diverse classes of polymers, namely polyurethanes, polyamides, polyesters, polyacrylates, epoxy resins, and metathesis-derived polymers. The described latent initiating systems encompass metal-containing as well as purely organic compounds that are activated by external triggers such as light, heat, or mechanical force. Special emphasis is put on the different chemical venues that can be taken to achieve true latency, which include masked N-heterocyclic carbenes, latent metathesis catalysts, and photolatent radical initiators, among others. Scientific challenges and the advantageous application of latent polymerization processes are discussed.


Assuntos
Polimerização , Polímeros/síntese química , Catálise/efeitos dos fármacos , Estrutura Molecular , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Processos Fotoquímicos/efeitos dos fármacos , Processos Fotoquímicos/efeitos da radiação , Polimerização/efeitos dos fármacos , Polimerização/efeitos da radiação , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA