Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256931

RESUMO

Timolol (TIM) is a non-selective ß-adrenergic receptor antagonist used orally for the treatment of hypertension and heart attacks, and topically for treating glaucoma; lately, it has also been used in some specific dermatological problems. In the present study, its photodegradation and potential risk of phototoxicity were examined using chemical, in silico and in vitro methods. The UV/VIS irradiated solutions of TIM at pH 1-13 were subjected to LC-UV and UPLC-HRMS/MS analyses showing pseudo first-order kinetics of degradation and several degradation products. The structures of these photodegradants were elucidated by fragmentation path analysis based on high resolution (HR) fragmentation mass spectra, and then used for toxicity evaluation using OSIRIS Property Explorer and Toxtree. Potential risk of phototoxicity was also studied using chemical tests for detecting ROS under UV/VIS irradiation and in vitro tests on BALB/c 3T3 mouse fibroblasts (MTT, NRU and Live/Dead tests). TIM was shown to be potentially phototoxic because of its UV/VIS absorptive properties and generation ROS during irradiation. As was observed in the MTT and NRU tests, the co-treatment of fibroblasts with TIM and UV/VIS light inhibited cell viability, especially when concentrations of the drug were higher than 50 µg/mL.

2.
Chemistry ; 29(61): e202302115, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37548079

RESUMO

Four A-π-D-π-A type small organic molecules with 1,8-naphthalimide motifs were successfully synthesised. The designed compounds are built of two 1,8-naphthalimide units linked via ethynyl π-linkages with selected functionalised donor motifs i. e. 2,2'-bithiophene, fluorene, phenothiazine and carbazole derivative. The synthesis based on Sonogashira cross-coupling allowed us to obtain the presented dyes with good yields. The resulting symmetrical small molecules' optical, electrochemical and thermal properties were thoroughly investigated, and their potential applicability for the OLED devices was demonstrated. In addition, the relationship between molecular structure and properties was considered by employing experimental and theoretical studies. As a result of using various donor groups, it was possible to achieve efficient electroluminescence in the range from green (DEV4) to orange-red light (DEV3) with a maximum luminance of 3 820 cd/m2 for DEV4. Upon the insertion of an acetylene linker to the designed molecules, the free rotation of D and A fragments, and hence the effective π-electron communication within the entire molecule, is possible, which was confirmed by DFT studies. The obtained dyes are characterised by high thermal stability, reversible oxidation-reduction process, satisfactory optoelectronic properties and good solubility in organic solvents, which is advisable for the application in small molecular organic light-emitting diodes (SM-OLEDs) technology.

3.
Forensic Toxicol ; 40(1): 132-143, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454490

RESUMO

PURPOSE: New psychoactive substances (NPSs) still appear on the market, mainly due to their legal status. This situation indicates and alarms that permanent recognition of the designer drug scene should be conducted. In this paper, we describe the detection of three psychoactive substances in samples collected from drug users. METHODS: Qualitative characterization was performed using liquid chromatography-high-resolution tandem mass spectrometry with a quadrupole time-of-flight analyzer, gas chromatography with mass spectrometry and nuclear magnetic resonance spectroscopy. RESULTS: In this study, we reported the detection and structural elucidation of three psychoactive substances: 1-(4-bromophenyl)piperazine (pBPP), 1-(3-chloro-4-fluorophenyl)piperazine (3,4-CFPP) and methyl 8-methyl-3-phenyl-8-azabicyclo[3.2.1]octane-4-carboxylate (troparil). CONCLUSIONS: To the best of our knowledge, this is the first report that presents an identification methodology for these substances found in illegal products. Comprehensive characterization of the NPSs presented in this paper facilitates their detection and identification by forensic and clinical laboratories.


Assuntos
Fármacos do Sistema Nervoso Central , Cocaína , Cromatografia Gasosa-Espectrometria de Massas , Piperazinas
4.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296539

RESUMO

The understanding of the mechanism of Topo I inhibition by organic ligands is a crucial source of information that has led to the design of more effective and safe pharmaceuticals in oncological chemotherapy. The vast number of inhibitors that have been studied in this respect over the last decades have enabled the creation of a concept of an 'interfacial inhibitor', thereby describing the machinery of Topo I inhibition. The central module of action of this machinery is the interface of a Topo I/DNA/inhibitor ternary complex. Most of the 'interfacial inhibitors' are primarily kinetic inhibitors that form molecular complexes with an "on-off" rate timing; therefore, all of the contacts between the inhibitor and both the enzyme and the DNA are essential to keep the complex stable and reduce the "off rate". To test this hypothesis, we designed the compound using a C-9-(N-(2'-hydroxyethyl)amino)methyl substituent in an SN38 core, with a view that a flexible substituent may bind inside the nick of a model of the DNA and stabilize the complex, leading to a reduction in the "off rate" of a ligand in a potential ternary complex in vivo. Using docking analysis and molecular dynamics, free energy calculations on the level of the MM-PBSA and MM-GBSA model, here we presented the in silico-calculated structure of a ternary complex involving the studied compound 1. This confirmed our suggestion that compound 1 is situated in a groove of the nicked DNA model in a few conformations. The number of hydrogen bonds between the components of a ternary complex was established, which strengthens the complex and supports our view. The docking analysis and free energy calculations for the receptor structures which were obtained in the MD simulations of the ternary complex 1/DNA/Topo I show that the binding constant is stronger than it was for similar complexes with TPT, CPT, and SN38, which are commonly considered as strong Topo I inhibitors. The binary complex structure 1/DNA was calculated and compared with the experimental results of a complex that was in a solution. The analysis of the cross-peaks in NOESY spectra allowed us to assign the dipolar interactions between the given protons in the calculated structures. A DOSY experiment in the solution confirmed the strong binding of a ligand in a binary complex, having a Ka of 746 mM-1, which was compared with a Ka of 3.78 mM-1 for TPT. The MALDI-ToF MS showed the presence of the biohybrid, thus evidencing the occurrence of DNA alkylation by compound 1. Because of it having a strong molecular complex, alkylation is the most efficient way to reduce the "on-off" timing as it acts as a tool that causes the cog to brake in a working gear, and this is this activity we want to highlight in our contribution. Finally, the Topo I inhibition test showed a lower IC50 of the studied compound than it did for CPT and SN38.


Assuntos
Camptotecina , Prótons , Ligantes , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/química , DNA Topoisomerases Tipo I/metabolismo , Inibidores da Topoisomerase , DNA/metabolismo , Preparações Farmacêuticas
5.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360955

RESUMO

Novel nontoxic derivatives of SN38 with favorable antineoplastic properties were characterized in water solution using NMR. The phenomena observed by NMR were linked to basic pharmacological properties, such as solubility, bioavailability, chemical and stereochemical stability, and binding to natural DNA oligomers through the terminal G-C base pair, which is commonly considered a biological target of Topo I inhibitors. Compound 1, with bulky substituents at both C5(R) and C20(S) on the same side of a camptothecin core, manifests self-association, whereas diastereomers 2, with bulky C5(S) and C20(S) substituents are mostly monomeric in solution. The stereogenic center at C5 is stable in water solution at pH 5-6. The compound with an (N-azetidinyl)methyl substituent at C9 can undergo the retro Mannich reaction after a prolonged time in water solution. Both diastereomers exhibit different abilities in terms of binding to DNA oligomers: compound 1 is strongly bound, whereas the binding of compound 2 is rather weak. Molecular modeling produced results consistent with NMR experiments. These complementary data allow linking of the observed phenomena in NMR experiments to basic preliminary information on the pharmacodynamic character of compounds and are essential for planning further development research.


Assuntos
Antineoplásicos/química , DNA/química , Irinotecano/análogos & derivados , Simulação de Acoplamento Molecular , Inibidores da Topoisomerase I/química , Antineoplásicos/toxicidade , Irinotecano/toxicidade , Inibidores da Topoisomerase I/toxicidade
6.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299090

RESUMO

The compounds 7-ethyl-9-(N-methylamino)methyl-10-hydroxycamptothecin (2) and 7-ethyl-9-(N-morpholino)methyl-10-hydroxycamptothecin (3) are potential topoisomerase I poisons. Moreover, they were shown to have favorable anti-neoplastic effects on several tumor cell lines. Due to these properties, the compounds are being considered for advancement to the preclinical development stage. To gain better insights into the molecular mechanism with the biological target, here, we conducted an investigation into their interactions with model nicked DNA (1) using different techniques. In this work, we observed the complexity of the mechanism of action of the compounds 2 and 3, in addition to their decomposition products: compound 4 and SN38. Using DOSY experiments, evidence of the formation of strongly bonded molecular complexes of SN38 derivatives with DNA duplexes was provided. The molecular modeling based on cross-peaks from the NOESY spectrum also allowed us to assign the geometry of a molecular complex of DNA with compound 2. Confirmation of the alkylation reaction of both compounds was obtained using MALDI-MS. Additionally, in the case of 3, alkylation was confirmed in the recording of cross-peaks in the 1H/13C HSQC spectrum of 13C-enriched compound 3. In this work, we showed that the studied compounds-parent compounds 2 and 3, and their potential metabolite 4 and SN38-interact inside the nick of 1, either forming the molecular complex or alkylating the DNA nitrogen bases. In order to confirm the influence of the studied compounds on the topoisomerase I relaxation activity of supercoiled DNA, the test was performed based upon the measurement of the fluorescence of DNA stain which can differentiate between supercoiled and relaxed DNA. The presented results confirmed that studied SN38 derivatives effectively block DNA relaxation mediated by Topo I, which means that they stop the machinery of Topo I activity.


Assuntos
Camptotecina/análogos & derivados , Camptotecina/metabolismo , Quebras de DNA de Cadeia Simples , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/metabolismo , DNA Super-Helicoidal , Inibidores da Topoisomerase II/farmacologia , Alquilação , Humanos
7.
Bioorg Med Chem Lett ; 46: 128146, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048881

RESUMO

Derivatives of SN38 were synthesized that were either monosubstituted at C-5 or C-9 or disubstituted at both C-5 and C-9. Substitution to C-5 led to the generation of pairs of diastereomers (2c-2 h) in a one-pot reaction and was readily separable by HPLC. The absolute configurations of C-5 were established by electronic circular dichroism experiments. Compounds were tested in vitro against human cancer cell lines as well as a normal cell line. The impact of compounds 2a-2j on cancer cells is significant and the IC50 values against the normal cell line are several times higher than that of SN38. Using the Mannich reaction we obtained a new innovative group of derivatives with unique biological properties that preserves the high cytotoxicity in cancer cells and eliminates the acute toxicity to non-neoplastic cells, which can be considered a breakthrough in chemotherapy with the use of topoisomerase I inhibitors from the camptothecin family.


Assuntos
Antineoplásicos/farmacologia , Camptotecina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Camptotecina/síntese química , Camptotecina/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade
8.
Bioorg Chem ; 107: 104631, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33476866

RESUMO

In this account we present NMR based results of the interaction of 7-ethyl-9-hydroxymethyl-10-hydroxycamptothecin (1), a derivative of SN38, with a model nicked DNA decamer mimicking the wild type DNA target of Topoisomerase I inhibitors from the camptothecin family. The title compound 1 can be considered a main metabolite of phase I in the metabolic pathway of camptothecin derivatives bearing the alkylamino substituent. Therefore, its pharmacodynamic properties are of interest. It was established by DOSY (Diffusion Ordered Spectroscopy) that compound 1 forms a fairly stable molecular complex with a model nicked DNA decamer with affinity constant Ka 3.02 mM-1. The analysis of NOESY experiments revealed intermolecular cross peaks and mutual induced shifts on both interacting components allowing the conclusion that guest molecule 1 is stacking the nitrogen bases inside the nick. MD (Molecular Dynamics) analysis of four possible inclusions of 1 inside the nick allows establishing the detailed geometry of a complex. Two conformations are suggested as the ones best representing the results of molecular modeling reconciled with experimental NOESY results. The aromatic core of both structures is stacking the nitrogen bases in a nick facing the unbroken strand with ring A. The protons in ring E interact with ribose protons of edge bases of a nick. In conclusion, it can be asserted that SN38 derivative 1 can effectively bind the molecular target of Topo I enzyme and play a role as a Topo I inhibitor.


Assuntos
Camptotecina/química , DNA Topoisomerases Tipo I/química , DNA/química , Inibidores da Topoisomerase I/química , Sítios de Ligação , Camptotecina/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Inibidores da Topoisomerase I/metabolismo
10.
Magn Reson Chem ; 55(2): 128-136, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27575369

RESUMO

The synthesis of water-soluble SN38 derivatives is presented, and their stability in solutions used during drug development studies has been investigated. A preliminary study of mechanism of action of 9-aminomethyl SN38 is presented. Using NMR techniques, the interaction of the oligomer d(GCGATCGC)2 is studied, showing that the terminal GC base pairs are the main site of interaction. Using pulsed field gradient spin echo and mass spectroscopy, evidence of a spontaneous alkylation reaction of the DNA oligomer with SN38 derivatives is presented. A proposed mechanism of reaction is suggested. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/química , Camptotecina/análogos & derivados , DNA/química , Alquilação , Antineoplásicos/síntese química , Sequência de Bases , Camptotecina/síntese química , Camptotecina/química , Estabilidade de Medicamentos , Irinotecano , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Polidesoxirribonucleotídeos/química , Relação Estrutura-Atividade
11.
Magn Reson Chem ; 53(8): 565-71, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26017759

RESUMO

Using DOSY NMR and MALDI-TOF MS techniques, we present evidence that quaternary trimethylammonium salts of topotecan, [TPT-NMe3 ](+) X(-) (X = CF3SO3, HCOO), bind covalently the natural DNA oligomer upon near UV irradiation in water under physiological conditions. It is shown that formate salt is very reactive at pH 7 and requires short irradiation time. This weak irradiation at 365 nm paves the way for a new application of TPT derivatives in clinical use, which can dramatically increase the therapeutic effects of a medicine.


Assuntos
DNA/química , Compostos de Amônio Quaternário/química , Topotecan/química , Raios Ultravioleta , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Sais/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA