RESUMO
Foldy is a cloud-based application that allows non-computational biologists to easily utilize advanced AI-based structural biology tools, including AlphaFold and DiffDock. With many deployment options, it can be employed by individuals, labs, universities, and companies in the cloud without requiring hardware resources, but it can also be configured to utilize locally available computers. Foldy enables scientists to predict the structure of proteins and complexes up to 6000 amino acids with AlphaFold, visualize Pfam annotations, and dock ligands with AutoDock Vina and DiffDock. In our manuscript, we detail Foldy's interface design, deployment strategies, and optimization for various user scenarios. We demonstrate its application through case studies including rational enzyme design and analyzing proteins with domains of unknown function. Furthermore, we compare Foldy's interface and management capabilities with other open and closed source tools in the field, illustrating its practicality in managing complex data and computation tasks. Our manuscript underlines the benefits of Foldy as a day-to-day tool for life science researchers, and shows how Foldy can make modern tools more accessible and efficient.
Assuntos
Proteínas , Software , Humanos , AminoácidosRESUMO
In this study, we explored the development of engineered inducible systems. Publicly available data from previous transposon sequencing assays were used to identify regulators of metabolism in Pseudomonas putida KT2440. For AraC family regulators (AFRs) represented in these data, we posited AFR/promoter/inducer groupings. Twelve promoters were characterized for a response to their proposed inducers in P. putida, and the resultant data were used to create and test nine two-plasmid sensor systems in Escherichia coli. Several of these were further developed into a palette of single-plasmid inducible systems. From these experiments, we observed an unreported inducer response from a previously characterized AFR, demonstrated that the addition of a P. putida transporter improved the sensor dynamics of an AFR in E. coli, and identified an uncharacterized AFR with a novel potential inducer specificity. Finally, targeted mutations in an AFR, informed by structural predictions, enabled the further diversification of these inducible plasmids.
Assuntos
Proteínas de Escherichia coli , Pseudomonas putida , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regiões Promotoras Genéticas/genética , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Plasmídeos/genética , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Escherichia coli/genética , Fator de Transcrição AraC/genéticaRESUMO
There is a growing need for applications capable of handling large synthesis biology experiments. At the core of synthetic biology is the process of cloning and manipulating DNA as plasmids. Here, we report the development of an application named DNAda capable of writing automation instructions for any given DNA construct design generated by the J5 DNA assembly program. We also describe the automation pipeline and several useful features. The pipeline is particularly useful for the construction of combinatorial DNA assemblies. Furthermore, we demonstrate the platform by constructing a library of polyketide synthase parts, which includes 120 plasmids ranging in size from 7 to 14 kb from 4 to 7 DNA fragments.
Assuntos
DNA , Biologia Sintética , Plasmídeos/genética , DNA/genética , Biblioteca Gênica , Automação , Clonagem MolecularRESUMO
IMPORTANCE: We explore when and why large classes of proteins expand into new sequence space. We used an unsupervised machine learning approach to observe the sequence landscape of REC domains of bacterial response regulator proteins. We find that within-gene recombination can switch effector domains and, consequently, change the regulatory context of the duplicated protein.
RESUMO
Type I polyketide synthases (T1PKSs) hold enormous potential as a rational production platform for the biosynthesis of specialty chemicals. However, despite great progress in this field, the heterologous expression of PKSs remains a major challenge. One of the first measures to improve heterologous gene expression can be codon optimization. Although controversial, choosing the wrong codon optimization strategy can have detrimental effects on the protein and product levels. In this study, we analyzed 11 different codon variants of an engineered T1PKS and investigated in a systematic approach their influence on heterologous expression in Corynebacterium glutamicum, Escherichia coli, and Pseudomonas putida. Our best performing codon variants exhibited a minimum 50-fold increase in PKS protein levels, which also enabled the production of an unnatural polyketide in each of these hosts. Furthermore, we developed a free online tool (https://basebuddy.lbl.gov) that offers transparent and highly customizable codon optimization with up-to-date codon usage tables. In this work, we not only highlight the significance of codon optimization but also establish the groundwork for the high-throughput assembly and characterization of PKS pathways in alternative hosts.
Assuntos
Policetídeo Sintases , Policetídeos , Policetídeo Sintases/metabolismo , Códon/genéticaRESUMO
Polyketide retrobiosynthesis, where the biosynthetic pathway of a given polyketide can be reversibly engineered due to the colinearity of the polyketide synthase (PKS) structure and function, has the potential to produce millions of organic molecules. Mixing and matching modules from natural PKSs is one of the routes to produce many of these molecules. Evolutionary analysis of PKSs suggests that traditionally used module boundaries may not lead to the most productive hybrid PKSs and that new boundaries around and within the ketosynthase domain may be more active when constructing hybrid PKSs. As this is still a nascent area of research, the generality of these design principles based on existing engineering efforts remains inconclusive. Recent advances in structural modeling and synthetic biology present an opportunity to accelerate PKS engineering by re-evaluating insights gained from previous engineering efforts with cutting edge tools.
Assuntos
Policetídeo Sintases , Policetídeos , Policetídeo Sintases/metabolismo , Policetídeos/metabolismoRESUMO
Type I modular polyketide synthases (PKSs) are multi-domain enzymes functioning like assembly lines. Many engineering attempts have been made for the last three decades to replace, delete and insert new functional domains into PKSs to produce novel molecules. However, inserting heterologous domains often destabilize PKSs, causing loss of activity and protein misfolding. To address this challenge, here we develop a fluorescence-based solubility biosensor that can quickly identify engineered PKSs variants with minimal structural disruptions. Using this biosensor, we screen a library of acyltransferase (AT)-exchanged PKS hybrids with randomly assigned domain boundaries, and we identify variants that maintain wild type production levels. We then probe each position in the AT linker region to determine how domain boundaries influence structural integrity and identify a set of optimized domain boundaries. Overall, we have successfully developed an experimentally validated, high-throughput method for making hybrid PKSs that produce novel molecules.
Assuntos
Policetídeo Sintases , Policetídeo Sintases/metabolismo , Sequência de AminoácidosRESUMO
Modular polyketide synthases (PKSs) are polymerases that employ α-carboxyacyl-CoAs as extender substrates. This enzyme family contains several catalytic modules, where each module is responsible for a single round of polyketide chain extension. Although PKS modules typically use malonyl-CoA or methylmalonyl-CoA for chain elongation, many other malonyl-CoA analogues are used to diversify polyketide structures in nature. Previously, we developed a method to alter an extension substrate of a given module by exchanging an acyltransferase (AT) domain while maintaining protein folding. Here, we report in vitro polyketide biosynthesis by 13 PKSs (the wild-type PKS and 12 AT-exchanged PKSs with unusual ATs) and 14 extender substrates. Our â¼200 in vitro reactions resulted in 13 structurally different polyketides, including several polyketides that have not been reported. In some cases, AT-exchanged PKSs produced target polyketides by >100-fold compared to the wild-type PKS. These data also indicate that most unusual AT domains do not incorporate malonyl-CoA and methylmalonyl-CoA but incorporate various rare extender substrates that are equal to in size or slightly larger than natural substrates. We developed a computational workflow to predict the approximate AT substrate range based on active site volumes to support the selection of ATs. These results greatly enhance our understanding of rare AT domains and demonstrate the benefit of using the proposed PKS engineering strategy to produce novel chemicals in vitro.
Assuntos
Policetídeo Sintases , Policetídeos , Policetídeo Sintases/metabolismo , Aciltransferases/química , Domínio Catalítico , Policetídeos/metabolismo , Especificidade por SubstratoRESUMO
Megasynthase enzymes such as type I modular polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) play a central role in microbial chemical warfare because they can evolve rapidly by shuffling parts (catalytic domains) to produce novel chemicals. If we can understand the design rules to reshuffle these parts, PKSs and NRPSs will provide a systematic and modular way to synthesize millions of molecules including pharmaceuticals, biomaterials, and biofuels. However, PKS and NRPS engineering remains difficult due to a limited understanding of the determinants of PKS and NRPS fold and function. We developed ClusterCAD to streamline and simplify the process of designing and testing engineered PKS variants. Here, we present the highly improved ClusterCAD 2.0 release, available at https://clustercad.jbei.org. ClusterCAD 2.0 boasts support for PKS-NRPS hybrid and NRPS clusters in addition to PKS clusters; a vastly enlarged database of curated PKS, PKS-NRPS hybrid, and NRPS clusters; a diverse set of chemical 'starters' and loading modules; the new Domain Architecture Cluster Search Tool; and an offline Jupyter Notebook workspace, among other improvements. Together these features massively expand the chemical space that can be accessed by enzymes engineered with ClusterCAD.