Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 15: 1356786, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711916

RESUMO

Introduction: The combination of gene content on the marker chromosome, chromosomal origin, level of mosaicism, origin mechanism (chromothripsis), and uniparental disomy can influence the final characterization of sSMCs. Several chromosomal aberrations, including sSMCs, have been observed in 30%-60% of patients with pigmentary mosaicism, and in more than 80%, chromosomal abnormalities are present in the mosaic state. In patients with pigmentary mosaicism the most representative chromosomes involved in sSMCs are 3, 5, 6, 9, 10, 13, 15, 18, 20, and X. In this study, we included the complete clinical, cytogenetic, and molecular characterization of seven patients with pigmentary mosaicism associated with the presence of SMCs of different chromosomal origins. Methods: The patients were diagnosed by the Genetics and Dermatology Department of three different hospitals. Cytogenetic and FISH analyses were performed on peripheral blood, light skin, and dark skin. FISH analysis was performed using different probes, depending on the marker chromosome description. Different array analysis was performed. Results: To date, of the seven cases studied, the chromosomal origins of six were successfully identified by FISH or array analysis. The chromosomes involved in SMCs were 6, 9, 15, and 18, X. The most frequently found was the centric minute structure. Discussion: To date, this group of seven patients constitutes the largest clinical and cytogenetically finely described study of cases with pigmentary mosaicism associated with sSMCs. Undoubtedly, analysis of the two skin types is a fundamental part of our study, as numerical differences may occur in the cell lines found in each skin type. The knowledge generated in this study will help delineate a very heterogeneous entity more accurately, and in the future, analyzing more patients with PM will likely establish a more definite association with the presence of this genetic alteration.

2.
J Appl Toxicol ; 38(9): 1262-1270, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29741206

RESUMO

Pesticides are commonly used worldwide and almost every human is potentially exposed to these chemicals. Exposure to pesticides such as permethrin and malathion has been associated with hematological malignancies in epidemiological studies. However, biological evidence showing if these chemicals induce genetic aberrations involved in the etiology of leukemia and lymphoma is missing. In our previous work, we have shown that a single high exposure (200 µm, 24 hours) of permethrin and malathion induce damage in genes associated with hematological malignancies in peripheral blood mononuclear cells analyzed by interphase fluorescence in situ hybridization (FISH). In the present study, we assessed by FISH whether exposure to low concentrations (0.1 µm, 72 hours) of permethrin and malathion induce aberrations in KMT2A and IGH genes, which are involved in the etiology of leukemia and lymphoma. Peripheral blood mononuclear cells were exposed to the chemicals, and damage in these genes was assessed on interphases and metaphases. We observed that both chemicals at low concentration induced structural aberrations in KMT2A and IGH genes. A higher level of damage was observed in KMT2A gene with malathion treatment and in IGH gene with permethrin exposure. We also observed numerical aberrations induced by these chemicals. The most frequent aberrations detected on interphase FISH were also observed on metaphases. Our results show that permethrin and malathion induce genetic damage in genes associated with hematological cancer, at concentrations biologically relevant. In addition, damage was observed on dividing cells, which suggests that these cells maintain their proliferation capacity in spite of the genetic damage they possess.


Assuntos
Dano ao DNA , Genes de Cadeia Pesada de Imunoglobulina , Histona-Lisina N-Metiltransferase/genética , Inseticidas/toxicidade , Leucemia/induzido quimicamente , Leucócitos Mononucleares/efeitos dos fármacos , Linfoma/induzido quimicamente , Malation/toxicidade , Proteína de Leucina Linfoide-Mieloide/genética , Permetrina/toxicidade , Proliferação de Células , Sobrevivência Celular , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Hibridização in Situ Fluorescente , Interfase , Leucemia/enzimologia , Leucemia/genética , Leucemia/patologia , Leucócitos Mononucleares/enzimologia , Leucócitos Mononucleares/patologia , Linfoma/enzimologia , Linfoma/genética , Linfoma/patologia , Masculino , Metáfase , Índice Mitótico , Medição de Risco
3.
Toxicol In Vitro ; 44: 17-26, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28624474

RESUMO

Epidemiological studies have associated the exposure to permethrin and malathion with increased risk of leukemia and lymphoma. The aim of this study was to evaluate whether in vitro exposure to permethrin and malathion induces aberrations in genes involved in the etiology of these hematological malignancies. Genetic abnormalities in the IGH, KMT2A (MLL), ETV6 and RUNX1 genes, and aneuploidy induced by the in vitro exposure to permethrin and malathion (200µM, 24h), were analyzed by FISH in peripheral blood mononuclear cells (PBMCs). The gene fusions IGH-BCL2, KMT2A-AFF1 and ETV6-RUNX1 were further analyzed with nested RT-PCR in PBMCs, and in K562 cells exposed to acute and chronic treatments (0.1µM, 24h or every third day for two weeks) of insecticides. FISH analysis revealed that permethrin induces aneuploidy and structural alterations in IGH and KMT2A genes, and malathion induces breaks in KMT2A. RT-PCR detected ETV6-RUNX1 fusion in PBMCs acutely exposed to permethrin. Permethrin also induced ETV6-RUNX1 and IGH-BCL2 fusions in K562 cells, and malathion induced KMT2A-AFF1 and ETV6-RUNX1 fusions. Overall, we identified that both insecticides induce breaks and fusions in the studied genes, and permethrin induces aneuploidy. This study presents evidence of damage in cancer genes caused by these insecticides.


Assuntos
Inseticidas/toxicidade , Leucócitos Mononucleares/efeitos dos fármacos , Malation/toxicidade , Proteínas de Fusão Oncogênica/genética , Permetrina/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fusão Gênica , Humanos , Células K562 , Leucemia/genética , Leucócitos Mononucleares/metabolismo , Linfoma/genética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA