Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 10(8): 1226-1239, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513774

RESUMO

Inactivation of the tumor suppressor lipid phosphatase INPP4B is common in triple-negative breast cancer (TNBC). We generated a genetically engineered TNBC mouse model deficient in INPP4B. We found a dose-dependent increase in tumor incidence in INPP4B homozygous and heterozygous knockout mice compared with wild-type (WT), supporting a role for INPP4B as a tumor suppressor in TNBC. Tumors derived from INPP4B knockout mice are enriched for AKT and MEK gene signatures. Consequently, mice with INPP4B deficiency are more sensitive to PI3K or MEK inhibitors compared with WT mice. Mechanistically, we found that INPP4B deficiency increases PI(3,4)P2 levels in endocytic vesicles but not at the plasma membrane. Moreover, INPP4B loss delays degradation of EGFR and MET, while promoting recycling of receptor tyrosine kinases (RTK), thus enhancing the duration and amplitude of signaling output upon growth factor stimulation. Therefore, INPP4B inactivation in TNBC promotes tumorigenesis by modulating RTK recycling and signaling duration. SIGNIFICANCE: Inactivation of the lipid phosphatase INPP4B is frequent in TNBC. Using a genetically engineered mouse model, we show that INPP4B functions as a tumor suppressor in TNBC. INPP4B regulates RTK trafficking and degradation, such that loss of INPP4B prolongs both PI3K and ERK activation.This article is highlighted in the In This Issue feature, p. 1079.


Assuntos
Modelos Animais de Doenças , Genes Supressores de Tumor , Monoéster Fosfórico Hidrolases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Animais , Antineoplásicos/uso terapêutico , Células Cultivadas , Humanos , Camundongos Transgênicos , Fosfatidilinositóis/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
2.
Nature ; 499(7458): 341-5, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23770587

RESUMO

Rett syndrome (RTT) is an X-linked human neurodevelopmental disorder with features of autism and severe neurological dysfunction in females. RTT is caused by mutations in methyl-CpG-binding protein 2 (MeCP2), a nuclear protein that, in neurons, regulates transcription, is expressed at high levels similar to that of histones, and binds to methylated cytosines broadly across the genome. By phosphotryptic mapping, we identify three sites (S86, S274 and T308) of activity-dependent MeCP2 phosphorylation. Phosphorylation of these sites is differentially induced by neuronal activity, brain-derived neurotrophic factor, or agents that elevate the intracellular level of 3',5'-cyclic AMP (cAMP), indicating that MeCP2 may function as an epigenetic regulator of gene expression that integrates diverse signals from the environment. Here we show that the phosphorylation of T308 blocks the interaction of the repressor domain of MeCP2 with the nuclear receptor co-repressor (NCoR) complex and suppresses the ability of MeCP2 to repress transcription. In knock-in mice bearing the common human RTT missense mutation R306C, neuronal activity fails to induce MeCP2 T308 phosphorylation, suggesting that the loss of T308 phosphorylation might contribute to RTT. Consistent with this possibility, the mutation of MeCP2 T308A in mice leads to a decrease in the induction of a subset of activity-regulated genes and to RTT-like symptoms. These findings indicate that the activity-dependent phosphorylation of MeCP2 at T308 regulates the interaction of MeCP2 with the NCoR complex, and that RTT in humans may be due, in part, to the loss of activity-dependent MeCP2 T308 phosphorylation and a disruption of the phosphorylation-regulated interaction of MeCP2 with the NCoR complex.


Assuntos
Proteínas Correpressoras/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Treonina/metabolismo , Animais , Células Cultivadas , Humanos , Proteína 2 de Ligação a Metil-CpG/química , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Mutação , Neurônios/metabolismo , Fosforilação , Síndrome de Rett/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA