Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Sleep Breath ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717715

RESUMO

BACKGROUND: Obstructive sleep apnea (OSA) is associated with multiple comorbidities, including diabetes. Its development is preceded by alterations in the initial phase of carbohydrate metabolism characterized by insulin resistance. This study aims to evaluate the role of intermittent hypoxia and sleep fragmentation characteristic of OSA on the risk of insulin resistance among apneic patients without diabetes. METHODOLOGY: 92 consecutive patients with OSA without evidence of diabetes were recruited. Overnight video polysomnography was performed and, the following morning, fasting blood glucose, insulin and glycosylated hemoglobin were determined. Insulin resistance was measured using the HOMA-IR index. RESULTS: Insulin resistance was present in 52.2% of OSA patients. In these subjects, insulin resistance was independently associated to the apnea index during REM sleep (adjusted odds ratio [aOR] 1.09; 95% CI, 1.03 to 1.16; p = 0.004), desaturation index (aOR 1.08; 95% CI: 1.04 to 1.13; p = 0.027), and sleep time with oxygen saturation below 90% (aOR 1.04; 95% CI 1.00 to 1.08; p = 0.049). Furthermore, the HOMA-IR level was also directly related to the desaturation index (standardized regression coefficient [B] = 0.514, p < 0.001) and to the apnea index during REM sleep (B = 0.344, p = 0.002). CONCLUSIONS: Intermittent hypoxia and disturbances in REM sleep emerge as main contributors to insulin resistance in OSA patients yet to experience diabetes onset.

2.
Front Public Health ; 12: 1320159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633230

RESUMO

Aim: To assess the effectiveness of two interventions of knowledge transfer and behavior modification to improve medication adherence in patients with depressive disorders. Methods: An open, multicenter, three-arm clinical trial with random allocation by cluster to usual care or to one of the two interventions. The intervention for psychiatrists (PsI) included an educational program based on a patient-centered care model. The intervention for patients and relatives (PtI) included a collaborative care program plus a reminder system that works using an already available medication reminder application. The primary outcome was patient adherence to antidepressant treatment assessed through the Sidorkiewicz Adherence Instrument. Secondary measures were depression severity, comorbid anxiety and health-related quality of life. Mixed regression models with repeated measures were used for data analysis. Results: Ten psychiatrists and 150 patients diagnosed with depressive disorder from eight Community Mental Health Units in the Canary Islands (Spain) were included. Compared with usual care, no differences in long-term adherence were observed in either group PsI or PtI. The PsI group had significantly improved depression symptoms (B = -0.39; 95%CI: -0.65, -0.12; p = 0.004) during the follow-up period. The PtI group presented improved depression symptoms (B = -0.63; 95%CI: -0.96, -0.30; p < 0.001) and mental quality of life (B = 0.08; 95%CI: 0.004, 0.15; p = 0.039) during the follow-up period. Conclusion: The assessed interventions to improve adherence in patients with depressive disorder were effective for depression symptoms and mental quality of life, even over the long term. However, no effect on antidepressant adherence was observed.


Assuntos
Transtorno Depressivo , Qualidade de Vida , Humanos , Antidepressivos/uso terapêutico , Adesão à Medicação , Terapia Comportamental
3.
Antioxidants (Basel) ; 13(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38671851

RESUMO

High-fat diets (HFDs) enhance fish growth by optimizing nutrient utilization (i.e., protein-sparing effect); however, their potential negative effects have also encouraged the search for feed additives. This work has investigated the effects of an extract rich in a polyphenolic antioxidant, hydroxytyrosol (HT), supplemented (0.52 g HT/kg feed) in a HFD (24% lipid) in gilthead sea bream (Sparus aurata). Fish received the diet at two ration levels, standard (3% of total fish weight) or restricted (40% reduction) for 8 weeks. Animals fed the supplemented diet at a standard ration had the lowest levels of plasma free fatty acids (4.28 ± 0.23 mg/dL versus 6.42 ± 0.47 in the non-supplemented group) and downregulated hepatic mRNA levels of lipid metabolism markers (ppara, pparb, lpl, fatp1, fabp1, acox1, lipe and lipa), supporting potential fat-lowering properties of this compound in the liver. Moreover, the same animals showed increased muscle lipid content and peroxidation (1.58- and 1.22-fold, respectively, compared to the fish without HT), suggesting the modulation of body adiposity distribution and an enhanced lipid oxidation rate in that tissue. Our findings emphasize the importance of considering this phytocompound as an optimal additive in HFDs for gilthead sea bream to improve overall fish health and condition.

4.
Sensors (Basel) ; 24(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38544184

RESUMO

Body biomechanics and dental occlusion are related, but this interaction is not fully elucidated. The aim of this study was to investigate the association between body posture and occlusion in patients with and without dental pathology. A cross-sectional study was carried out with 29 patients divided into a control group and a group with pathology (malocclusions). Body posture was evaluated by dynamic baropodometry, analyzing parameters such as the line of gait and the anteroposterior and lateral position of the center of pressure (CoP). Occlusion was classified radiographically according to the sagittal skeletal relationship. Results showed significant differences in mean position phase line between groups (p = 0.01-0.02), with means of 115.85 ± 16.98 mm vs. 95.74 ± 24.47 mm (left side) and 109.03 ± 18.03 mm vs. 91.23 ± 20.80 mm (right side) for controls and pathologies, respectively. The effect size was large (Cohen's d 0.97 and 0.92). There were no differences in the anteroposterior (p = 0.38) or lateral (p = 0.78) position of the CoP. In gait analysis, significant differences were observed in left (548.89 ± 127.50 N vs. 360.15 ± 125.78 N, p < 0.001) and right (535.71 ± 131.57 N vs. 342.70 ± 108.40 N, p < 0.001) maximum heel strength between groups. The results suggest an association between body posture and occlusion, although further studies are needed to confirm this relationship. An integrated postural and occlusal approach could optimize the diagnosis and treatment of dental patients.


Assuntos
Oclusão Dentária , Má Oclusão , Humanos , Estudos Transversais , Postura , Marcha
5.
Transl Stroke Res ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231413

RESUMO

Advances in neonatology have significantly reduced mortality rates due to prematurity. However, complications of prematurity have barely changed in recent decades. Germinal matrix-intraventricular hemorrhage (GM-IVH) is one of the most severe complications of prematurity, and these children are prone to suffer short- and long-term sequelae, including cerebral palsy, cognitive and motor impairments, or neuropsychiatric disorders. Nevertheless, GM-IVH has no successful treatment. VP3.15 is a small, heterocyclic molecule of the 5-imino-1,2,4-thiadiazole family with a dual action as a phosphodiesterase 7 and glycogen synthase kinase-3ß (GSK-3ß) inhibitor. VP3.15 reduces neuroinflammation and neuronal loss in other neurodegenerative disorders and might ameliorate complications associated with GM-IVH. We administered VP3.15 to a mouse model of GM-IVH. VP3.15 reduces the presence of hemorrhages and microglia in the short (P14) and long (P110) term. It ameliorates brain atrophy and ventricle enlargement while limiting tau hyperphosphorylation and neuronal and myelin basic protein loss. VP3.15 also improves proliferation and neurogenesis as well as cognition after the insult. Interestingly, plasma gelsolin levels, a feasible biomarker of brain damage, improved after VP3.15 treatment. Altogether, our data support the beneficial effects of VP3.15 in GM-IVH by ameliorating brain neuroinflammatory, vascular and white matter damage, ultimately improving cognitive impairment associated with GM-IVH.

7.
Aging Cell ; 22(6): e13829, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37177826

RESUMO

Neuropathological aging is associated with memory impairment and cognitive decline, affecting several brain areas including the neurogenic niche of the dentate gyrus of the hippocampus (DG). In the healthy brain, homeostatic mechanisms regulate neurogenesis within the DG to facilitate the continuous generation of neurons from neural stem cells (NSC). Nevertheless, aging reduces the number of activated neural stem cells and diminishes the number of newly generated neurons. Strategies that promote neurogenesis in the DG may improve cognitive performance in the elderly resulting in the development of treatments to prevent the progression of neurological disorders in the aged population. Our work is aimed at discovering targeting molecules to be used in the design of pharmacological agents that prevent the neurological effects of brain aging. We study the effect of age on hippocampal neurogenesis using the SAMP8 mouse as a model of neuropathological aging. We show that in 6-month-old SAMP8 mice, episodic and spatial memory are impaired; concomitantly, the generation of neuroblasts and neurons is reduced and the generation of astrocytes is increased in this model. The novelty of our work resides in the fact that treatment of SAMP8 mice with a transforming growth factor-alpha (TGFα) targeting molecule prevents the observed defects, positively regulating neurogenesis and improving cognitive performance. This compound facilitates the release of TGFα in vitro and in vivo and activates signaling pathways initiated by this growth factor. We conclude that compounds of this kind that stimulate neurogenesis may be useful to counteract the neurological effects of pathological aging.


Assuntos
Disfunção Cognitiva , Células-Tronco Neurais , Camundongos , Animais , Fator de Crescimento Transformador alfa/metabolismo , Fator de Crescimento Transformador alfa/farmacologia , Neurogênese , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Disfunção Cognitiva/metabolismo , Giro Denteado , Envelhecimento/metabolismo
8.
Front Endocrinol (Lausanne) ; 14: 1155202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998471

RESUMO

Control of tissue metabolism and growth involves interactions between organs, tissues, and cell types, mediated by cytokines or direct communication through cellular exchanges. Indeed, over the past decades, many peptides produced by adipose tissue, skeletal muscle and bone named adipokines, myokines and osteokines respectively, have been identified in mammals playing key roles in organ/tissue development and function. Some of them are released into the circulation acting as classical hormones, but they can also act locally showing autocrine/paracrine effects. In recent years, some of these cytokines have been identified in fish models of biomedical or agronomic interest. In this review, we will present their state of the art focusing on local actions and inter-tissue effects. Adipokines reported in fish adipocytes include adiponectin and leptin among others. We will focus on their structure characteristics, gene expression, receptors, and effects, in the adipose tissue itself, mainly regulating cell differentiation and metabolism, but in muscle and bone as target tissues too. Moreover, lipid metabolites, named lipokines, can also act as signaling molecules regulating metabolic homeostasis. Regarding myokines, the best documented in fish are myostatin and the insulin-like growth factors. This review summarizes their characteristics at a molecular level, and describes both, autocrine effects and interactions with adipose tissue and bone. Nonetheless, our understanding of the functions and mechanisms of action of many of these cytokines is still largely incomplete in fish, especially concerning osteokines (i.e., osteocalcin), whose potential cross talking roles remain to be elucidated. Furthermore, by using selective breeding or genetic tools, the formation of a specific tissue can be altered, highlighting the consequences on other tissues, and allowing the identification of communication signals. The specific effects of identified cytokines validated through in vitro models or in vivo trials will be described. Moreover, future scientific fronts (i.e., exosomes) and tools (i.e., co-cultures, organoids) for a better understanding of inter-organ crosstalk in fish will also be presented. As a final consideration, further identification of molecules involved in inter-tissue communication will open new avenues of knowledge in the control of fish homeostasis, as well as possible strategies to be applied in aquaculture or biomedicine.


Assuntos
Tecido Adiposo , Obesidade , Animais , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Citocinas/metabolismo , Adipocinas/metabolismo , Músculo Esquelético/metabolismo , Osso e Ossos/metabolismo , Mamíferos/metabolismo
9.
Animals (Basel) ; 13(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36978610

RESUMO

Fish oil is commonly replaced by vegetable oils in sea bream diets, but little is known about their effects on intestinal health regarding oxidative stress biomarkers. The negative effects of lipid peroxidation on digestive mucosa could have consequences in animal nutrition and welfare. In this study, five isonitrogenous (46%) and isolipidic (22%) diets with 75% of vegetable oils inclusion were evaluated: soybean oil (S) alone or different mixtures containing soybean oil with linseed (SL), linseed and rapeseed (SLR), linseed and palm (SLP), and linseed, rapeseed, and palm (SLRP). Gilthead sea bream juveniles were fed twice a day for 18 weeks. Pyloric caeca and proximal intestine samples were collected 24 h post feeding for lipid peroxidation (LPO), antioxidant enzyme activities (SOD, CAT, GPx, GST, and GR) and gene expression analyses. Pyloric caeca presented larger unhealthy changes in oxidative status than proximal intestine. Although SL-fed fish showed the highest antioxidant activities, they were unable to cope with LPO that in pyloric caeca was 31.4 times higher than in the other groups. Instead, SLP fish presented the best oxidative status, with low LPO levels, antioxidant enzyme activities, and gene expression. In summary, between the vegetable oils dietary mixtures tested, SPL would maintain better intestinal health.

10.
Front Endocrinol (Lausanne) ; 14: 1101356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755925

RESUMO

Fish muscle regeneration is still a poorly known process. In the present study, an injury was done into the left anterior epaxial skeletal muscle of seventy 15 g gilthead sea bream (Sparus aurata) juveniles to evaluate at days 0, 1, 2, 4, 8, 16 and 30 post-wound, the expression of several muscle genes. Moreover, transcripts' expression in the bone (uninjured tissue) was also analyzed. Histology of the muscle showed the presence of dead tissue the first day after injury and how the damaged fibers were removed and replaced by new muscle fibers by day 16 that kept growing up to day 30. Gene expression results showed in muscle an early upregulation of igf-2 and a downregulation of ghr-1 and igf-1. Proteolytic systems expression increased with capn2 and ctsl peaking at 1 and 2 days post-injury, respectively and mafbx at day 8. A pattern of expression that fitted well with active myogenesis progression 16 days after the injury was then observed, with the recovery of igf-1, pax7, cmet, and cav1 expression; and later on, that of cav3 as well. Furthermore, the first days post-injury, the cytokines il-6 and il-15 were also upregulated confirming the tissue inflammation, while tnfα was only upregulated at days 16 and 30 to induce satellite cells recruitment; overall suggesting a possible role for these molecules as myokines. The results of the bone transcripts showed an upregulation first, of bmp2 and ctsk at days 1 and 2, respectively; then, ogn1 and ocn peaked at day 4 in parallel to mstn2 downregulation, and runx2 and ogn2 increased after 8 days of muscle injury, suggesting a possible tissue crosstalk during the regenerative process. Overall, the present model allows studying the sequential involvement of different regulatory molecules during muscle regeneration, as well as the potential relationship between muscle and other tissues such as bone to control musculoskeletal development and growth, pointing out an interesting new line of research in this group of vertebrates.


Assuntos
Fator de Crescimento Insulin-Like I , Dourada , Animais , Fator de Crescimento Insulin-Like I/metabolismo , Dourada/genética , Dourada/metabolismo , Músculos/metabolismo , Proteólise
11.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36498967

RESUMO

Skeletal muscle is formed by multinucleated myofibers originated by waves of hyperplasia and hypertrophy during myogenesis. Tissue damage triggers a regeneration process including new myogenesis and muscular remodeling. During myogenesis, the fusion of myoblasts is a key step that requires different genes' expression, including the fusogens myomaker and myomixer. The present work aimed to characterize these proteins in gilthead sea bream and their possible role in in vitro myogenesis, at different fish ages and during muscle regeneration after induced tissue injury. Myomaker is a transmembrane protein highly conserved among vertebrates, whereas Myomixer is a micropeptide that is moderately conserved. myomaker expression is restricted to skeletal muscle, while the expression of myomixer is more ubiquitous. In primary myocytes culture, myomaker and myomixer expression peaked at day 6 and day 8, respectively. During regeneration, the expression of both fusogens and all the myogenic regulatory factors showed a peak after 16 days post-injury. Moreover, myomaker and myomixer were present at different ages, but in fingerlings there were significantly higher transcript levels than in juveniles or adult fish. Overall, Myomaker and Myomixer are valuable markers of muscle growth that together with other regulatory molecules can provide a deeper understanding of myogenesis regulation in fish.


Assuntos
Dourada , Animais , Dourada/genética , Dourada/metabolismo , Proteínas Musculares/metabolismo , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , Músculo Esquelético/metabolismo , Micropeptídeos
12.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430595

RESUMO

Polyphosphate (polyP), a phosphate polymer released by activated platelets, may modulate various stages of hemostasis by binding to blood proteins. In this context, we previously reported that polyP binds to the von Willebrand factor (VWF). One of the most significant functions of VWF is to bind to and protect the blood circulating Factor VIII (FVIII). Therefore, here, we study the role of polyP in the VWF-FVIII complex in vitro and suggest its biological significance. Surface plasmon resonance and electrophoretic mobility assays indicated that polyP binds dynamically to VWF only in the absence of FVIII. Using the VWF Ristocetin Cofactor assay, the most accepted method for studying VWF in platelet adhesion, we found that polyP activates this role of VWF only at low levels of FVIII, such as in plasmas with chemically depleted FVIII and plasmas from severe hemophilia A patients. Moreover, we demonstrated that FVIII competes with polyP in the activation of VWF. Finally, polyP also increases the binding of VWF to platelets in samples from patients with type 2 and type 3 von Willebrand disease. We propose that polyP may be used in designing new therapies to activate VWF when FVIII cannot be used.


Assuntos
Polifosfatos , Fator de von Willebrand , Humanos , Fator VIII/metabolismo , Hemostáticos/metabolismo , Hemostáticos/farmacologia , Complexo Glicoproteico GPIb-IX de Plaquetas , Polifosfatos/metabolismo , Polifosfatos/farmacologia , Fator de von Willebrand/metabolismo
13.
Front Physiol ; 13: 966175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277183

RESUMO

The dietary inclusion of plant-based products in fish feeds formulation is required for the sustainable development of aquaculture. Moreover, considering functional diets, hydroxytyrosol, one of the major phenolic compounds found in olives (Olea europaea), has been identified as a potential candidate to be used in the aquafeeds industry due to its health promoting abilities. The aim of this study was to evaluate the effects of the inclusion of an olive juice extract rich in hydroxytyrosol as an additive (0.52 g HT/kg feed) in a high-fat (24% lipids) diet in gilthead sea bream (Sparus aurata) juveniles. Moreover, the experimental diets, with or without the extract, were administered daily at a standard (3% of total biomass in the tank) or restricted ration (40% reduction) for 8-9 weeks. Growth and biometric parameters, insulin-like growth factor 1 (IGF-1) plasma levels and growth hormone/IGF axis-, myogenic- and osteogenic-related genes expression in liver, white muscle and/or bone were analyzed. Moreover, in vitro cultures of vertebra bone-derived cells from fish fed the diets at a standard ration were performed at weeks 3 and 9 to explore the effects of hydroxytyrosol on osteoblasts development. Although neither body weight or any other biometric parameter were affected by diet composition after 4 or 8 weeks, the addition of the hydroxytyrosol-rich extract to the diet increased IGF-1 plasma levels, regardless of the ration regime, suggesting an anabolic condition. In muscle, the higher mRNA levels of the binding protein igfbp-5b and the myoblast fusion marker dock5 in fish fed with the hydroxytyrosol-rich diet suggested that this compound may have a role in muscle, inducing development and a better muscular condition. Furthermore in bone, increased osteogenic potential while delayed matrix mineralization after addition to the diet of the olive juice extract was supported by the upregulated expression of igf-1 and bmp4 and reduced transcript levels of osteopontin. Overall, this study provides new insights into the beneficial use of hydroxytyrosol as a dietary additive in gilthead sea bream functional diets to improve muscle-skeletal condition and, the aquaculture industry.

14.
Vaccine ; 40(41): 5942-5949, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36068110

RESUMO

BACKGROUND: In 2021, four vaccines against Covid-19 (BNT162b2, mRNA-1273, ChAdOx1nCoV-19, and JNJ-78436735) were employed in the region of Valencia, Spain. We conducted a survey to identify real-world, self-reported frequency and severity of side effects during the week after vaccination. METHODS: Survey data was obtained from April 19, 2021, to October 6, 2021, at three different moments in time: day one, day three and day seven after vaccination. Answers were linked to individual-level, personal and clinical information. Respondents were stratified by the vaccine they received and reported effects were presented over time and stratified by severity. We compared our results per vaccine with the frequencies stated in each Summary of Product Characteristics (SmPC). We used binomial logistic models to identify associations between respondent characteristics and side effects. RESULTS: No symptoms were reported by 1,986 respondents (14.35 %), 6,254 informed exclusively mild symptoms (45.20 %), 3,444 up to moderate symptoms (24.89 %), and 2,153 people (15.56 %) notified also severe symptoms. Among the latter, the more frequent were extreme tiredness (7.0 %), and nausea or vomiting (7.1 %). The reported frequency of facial paralysis (0.4 %) was much higher than reflected in SmPCs. Female sex, younger age, previous positive Active Infection Diagnostic Test, chronicity, and vaccination with other than the BNT162b2 vaccine were associated to an increased risk of side effects (p < 0.001). CONCLUSIONS: Side effects after vaccination are common in the real-world. However, they are principally mild, and their frequency declines after a few days. Providing patients with dependable, beforehand information about side effects may improve outcomes and reinforce vaccination programs.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Vacina de mRNA-1273 contra 2019-nCoV , Ad26COVS1 , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , ChAdOx1 nCoV-19 , Feminino , Humanos , Espanha/epidemiologia , Inquéritos e Questionários , Vacinação/efeitos adversos
15.
Front Cell Dev Biol ; 10: 908045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035990

RESUMO

Germinal matrix-intraventricular hemorrhage (GM-IVH) is the most frequent intracranial hemorrhage in the preterm infant (PT). Long-term GM-IVH-associated sequelae include cerebral palsy, sensory and motor impairment, learning disabilities, or neuropsychiatric disorders. The societal and health burden associated with GM-IVH is worsened by the fact that there is no successful treatment to limit or reduce brain damage and neurodevelopment disabilities. Caffeine (Caf) is a methylxanthine that binds to adenosine receptors, regularly used to treat the apnea of prematurity. While previous studies support the beneficial effects at the brain level of Caf in PT, there are no studies that specifically focus on the role of Caf in GM-IVH. Therefore, to further understand the role of Caf in GM-IVH, we have analyzed two doses of Caf (10 and 20 mg/kg) in a murine model of the disease. We have analyzed the short (P14) and long (P70) effects of the treatment on brain atrophy and neuron wellbeing, including density, curvature, and phospho-tau/total tau ratio. We have analyzed proliferation and neurogenesis, as well as microglia and hemorrhage burdens. We have also assessed the long-term effects of Caf treatment at cognitive level. To induce GM-IVH, we have administered intraventricular collagenase to P7 CD1 mice and have analyzed these animals in the short (P14) and long (P70) term. Caf showed a general neuroprotective effect in our model of GM-IVH of the PT. In our study, Caf administration diminishes brain atrophy and ventricle enlargement. Likewise, Caf limits neuronal damage, including neurite curvature and tau phosphorylation. It also contributes to maintaining neurogenesis in the subventricular zone, a neurogenic niche that is severely affected after GM-IVH. Furthermore, Caf ameliorates small vessel bleeding and inflammation in both the cortex and the subventricular zone. Observed mitigation of brain pathological features commonly associated with GM-IVH also results in a significant improvement of learning and memory abilities in the long term. Altogether, our data support the promising effects of Caf to reduce central nervous system complications associated with GM-IVH.

16.
Artigo em Inglês | MEDLINE | ID: mdl-35182764

RESUMO

To evaluate the effects of feeding frequency (FF) and dietary protein/carbohydrate (P/CH) ratios on appetite regulation of gilthead seabream, two practical diets were formulated to include high protein and low carbohydrate (P50/CH10 diet) or low protein and high carbohydrate (P40/CH20 diet) content and each diet was fed to triplicate groups of fish until visual satiation each meal at a FF of 1, 2, or 3 meals per day. Feed intake and feed conversion ratio were higher in fish fed 2 or 3 meals than 1 meal per day and in fish fed the P40/CH20 than the P50/CH10 diet. The specific growth rate was only affected by FF, being higher in fish fed 2 or 3 meals per day than 1 meal per day. Expression of the cocaine-amphetamine-related transcript, corticotropin-releasing hormone, ghrelin receptor-a (ghsr-a), leptin, and neuropeptide y in the brain, cholecystokinin (cck) in the intestine, and leptin and ghrelin in the stomach was not affected by FF or dietary P/CH ratio. This is the first time that ghrelin cells were immune-located in the stomach of gilthead seabream. Fish fed 3 meals per day presented lower cck expression in the brain than those fed twice per day and higher hepatic ghsr-b expression than those fed once per day. Fish fed P40/CH20 diet presented higher hepatic leptin expression than those fed P50/CH10 diet. In conclusion, present results indicate that feeding a P40/CH20 diet at 3 meals a day seems to decrease the satiation feeling of gilthead seabream compared to fish fed higher P/CH ratio diets or fed 1 or 2 meals a day.


Assuntos
Carboidratos da Dieta , Dourada , Animais , Regulação do Apetite , Colecistocinina/genética , Proteínas Alimentares , Ingestão de Alimentos , Grelina/genética , Leptina , Dourada/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-34848371

RESUMO

Adipogenesis is a tightly regulated process, and the involvement of autophagy has been recently proposed in mammalian models. In rainbow trout, two well-defined phases describe the development of primary cultured adipocyte cells: proliferation and differentiation. Nevertheless, information on the transcriptional profile at the onset of differentiation and the potential role of autophagy in this process is scarce. In the present study, the cells showed an early and transient induction of several adipogenic transcription factors genes' expression (i.e., cebpa and cebpb) along with the morphological changes (round shape filled with small lipid droplets) typical of the onset of adipogenesis. Then, the expression of various lipid metabolism-related genes involving the synthesis (fas), uptake (fatp1 and cd36), accumulation (plin2) and mobilization (hsl) of lipids, characteristic of the mature adipocyte, increased. In parallel, several autophagy markers (i.e., atg4b, gabarapl1 and lc3b) mirrored the expression of those adipogenic-related genes, suggesting a role of autophagy during in vitro fish adipogenesis. In this regard, the incubation of preadipocytes with lysosomal inhibitors (Bafilomycin A1 or Chloroquine), described to prevent autophagy flux, delayed the process of adipogenesis (i.e., cell remodelling), thus suggesting a possible relationship between autophagy and adipocyte differentiation in trout. Moreover, the disruption of the autophagic flux altered the expression of some key adipogenic genes such as cebpa and pparg. Overall, this study contributes to improve our knowledge on the regulation of rainbow trout adipocyte differentiation, and highlights for the first time in fish the involvement of autophagy on adipogenesis, suggesting a close-fitting connection between both processes.


Assuntos
Adipogenia , Oncorhynchus mykiss , Adipócitos , Adipogenia/genética , Animais , Autofagia , Diferenciação Celular , Metabolismo dos Lipídeos , Oncorhynchus mykiss/genética
18.
Trans GIS ; 25(5): 2191-2239, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34512103

RESUMO

COVID-19 has infected over 163 million people and has resulted in over 3.9 million deaths. Regarding the tools and strategies to research the ongoing pandemic, spatial analysis has been increasingly utilized to study the impacts of COVID-19. This article provides a review of 221 scientific articles that used spatial science to study the pandemic published from June 2020 to December 2020. The main objectives are: to identify the tools and techniques used by the authors; to review the subjects addressed and their disciplines; and to classify the studies based on their applications. This contribution will facilitate comparisons with the body of work published during the first half of 2020, revealing the evolution of the COVID-19 phenomenon through the lens of spatial analysis. Our results show that there was an increase in the use of both spatial statistical tools (e.g., geographically weighted regression, Bayesian models, spatial regression) applied to socioeconomic variables and analysis at finer spatial and temporal scales. We found an increase in remote sensing approaches, which are now widely applied in studies around the world. Lockdowns and associated changes in human mobility have been extensively examined using spatiotemporal techniques. Another dominant topic studied has been the relationship between pollution and COVID-19 dynamics, which enhance the impact of human activities on the pandemic's evolution. This represents a shift from the first half of 2020, when the research focused on climatic and weather factors. Overall, we have seen a vast increase in spatial tools and techniques to study COVID-19 transmission and the associated risk factors.

19.
Artigo em Inglês | MEDLINE | ID: mdl-34119649

RESUMO

The use of probiotics has been recently considered a novel therapeutic strategy to prevent pathologies such as obesity; however, the specific mechanisms of action by which probiotics exert their beneficial effects on metabolic health remain unclear. The aim of the present study was to investigate the short-term effects of a probiotic Lactobacillus rhamnosus supplementation (PROB) on appetite regulation, growth-related markers, and microbiota diversity in zebrafish (Danio rerio) larvae, compared to a group subjected to a constant darkness photoperiod (DARK), as well as to evaluate the effects of both treatments on melatonin receptors' expression. After a 24 h treatment, both PROB and DARK conditions caused a significant increase in leptin a expression. Moreover, mRNA abundances of leptin b and proopiomelanocortin a were elevated in the PROB group, and DARK showed a similar tendency, supporting a negative regulation of appetite markers by the treatments. Moreover, both PROB and DARK also enhanced the abundances of melatonin receptors transcript (melatonin receptor 1 ba and bb) and protein (melatonin receptor 1) suggesting a potential involvement of melatonin in mediating these effects. Nevertheless, treatments did not exhibit a significant effect on the expression of most of the growth hormone/insulin-like growth factor axis genes evaluated. Finally, only the DARK condition significantly modulated gut microbiota diversity at such short time, altogether highlighting the rapid effects of this probiotic on modulating appetite regulatory and melatonin receptors' expression, without a concomitant variation of gut microbiota.


Assuntos
Apetite/fisiologia , Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus/química , Larva/metabolismo , Fotoperíodo , Probióticos/farmacologia , Receptores de Melatonina/metabolismo , Animais , Apetite/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Melatonina/metabolismo , Receptores de Melatonina/genética , Peixe-Zebra
20.
Animals (Basel) ; 11(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494202

RESUMO

The upward trend of seawater temperature has encouraged improving the knowledge of its consequences on fish, considering also the development of diets including vegetable ingredients as an approach to achieve a more sustainable aquaculture. This study aims to determine the effects on musculoskeletal growth of: (1) a high-water temperature of 28 °C (versus 21 °C) in gilthead sea bream juveniles (Sparus aurata) fed with a diet rich in palm oil and, (2) feeding the fish reared at 28 °C with two other diets containing rapeseed oil or an equilibrated combination of both vegetable oils. Somatic parameters and mRNA levels of growth hormone-insulin-like growth factors (GH-IGFs) axis-, osteogenic-, myogenic-, lipid metabolism- and oxidative stress-related genes in vertebra bone and/or white muscle are analyzed. Overall, the data indicate that high-water rearing temperature in this species leads to different adjustments through modulating the gene expression of members of the GH-IGFs axis (down-regulating igf-1, its receptors, and binding proteins) and also, to bone turnover (reducing the resorption-activity genes cathepsin K (ctsk) and matrix metalloproteinase-9 (mmp9)) to achieve harmonic musculoskeletal growth. Moreover, the combination of palm and rapeseed oils seems to be the most beneficial at high-water rearing temperature for both balanced somatic growth and muscular fatty acid uptake and oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA