Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mil Med Res ; 10(1): 48, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853489

RESUMO

BACKGROUND: Physiological and biochemical processes across tissues of the body are regulated in response to the high demands of intense physical activity in several occupations, such as firefighting, law enforcement, military, and sports. A better understanding of such processes can ultimately help improve human performance and prevent illnesses in the work environment. METHODS: To study regulatory processes in intense physical activity simulating real-life conditions, we performed a multi-omics analysis of three biofluids (blood plasma, urine, and saliva) collected from 11 wildland firefighters before and after a 45 min, intense exercise regimen. Omics profiles post- versus pre-exercise were compared by Student's t-test followed by pathway analysis and comparison between the different omics modalities. RESULTS: Our multi-omics analysis identified and quantified 3835 proteins, 730 lipids and 182 metabolites combining the 3 different types of samples. The blood plasma analysis revealed signatures of tissue damage and acute repair response accompanied by enhanced carbon metabolism to meet energy demands. The urine analysis showed a strong, concomitant regulation of 6 out of 8 identified proteins from the renin-angiotensin system supporting increased excretion of catabolites, reabsorption of nutrients and maintenance of fluid balance. In saliva, we observed a decrease in 3 pro-inflammatory cytokines and an increase in 8 antimicrobial peptides. A systematic literature review identified 6 papers that support an altered susceptibility to respiratory infection. CONCLUSION: This study shows simultaneous regulatory signatures in biofluids indicative of homeostatic maintenance during intense physical activity with possible effects on increased infection susceptibility, suggesting that caution against respiratory diseases could benefit workers on highly physical demanding jobs.


Assuntos
Exercício Físico , Multiômica , Humanos , Exercício Físico/fisiologia , Citocinas
2.
Ann Work Expo Health ; 67(8): 1011-1017, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37597244

RESUMO

Wildland firefighters (WFFs) are exposed to many inhalation hazards working in the wildland fire environment. To assess occupational exposures and acute and subacute health effects among WFFs, the wildland firefighter exposure and health effects study collected data for a 2-year repeated measures study. This manuscript describes the exposure assessment from one Interagency Hotshot Crew (N = 19) conducted at a wildfire incident. Exposures to benzene, toluene, ethylbenzene, xylene isomers, formaldehyde, acetaldehyde, and naphthalene were measured through personal air sampling each work shift. Biological monitoring was done for creatinine-adjusted levoglucosan in urine pre- and post-shift. For 3 days sampling at the wildfire incident, benzene, toluene, ethylbenzene, xylene isomers (m and p, and o) exposure was highest on day 1 (geometric mean [GM] = 0.015, 0.042, 0.10, 0.42, and 0.15 ppm, respectively) when WFFs were not exposed to smoke but used chainsaws to remove vegetation and prepare fire suppression breaks. Exposure to formaldehyde and acetaldehyde was highest on day 2 (GM = 0.03 and 0.036 ppm, respectively) when the WFFs conducted a firing operation and were directly exposed to wildfire smoke. The greatest difference of pre- and post-shift levoglucosan concentrations were observed on day 3 (pre-shift: 9.7 and post-shift: 47 µg/mg creatinine) after WFFs conducted mop up (returned to partially burned area to extinguish any smoldering vegetation). Overall, 65% of paired samples (across all sample days) showed a post-shift increase in urinary levoglucosan and 5 firefighters were exposed to benzene at concentrations at or above the National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit. Our findings further demonstrate that exposure to inhalation hazards is one of many risks that wildland firefighters experience while suppressing wildfires.


Assuntos
Bombeiros , Exposição Ocupacional , Incêndios Florestais , Humanos , Estados Unidos , Exposição Ocupacional/análise , Exposição por Inalação/análise , Creatinina/urina , Benzeno , Xilenos , Acetaldeído , Formaldeído
3.
Am J Ind Med ; 65(11): 878-897, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35711032

RESUMO

BACKGROUND: The public safety sector includes law enforcement officers (LEO), corrections officers (CO), firefighter service (FF), wildland firefighting (WFF), and emergency medical services (EMS), as defined in the National Occupational Research Agenda (NORA) of the National Institute for Occupational Safety and Health (NIOSH). Across these occupations, shiftwork, long-duration shifts, and excessive overtime are common. Our objective was to identify research gaps related to working hours, sleep, and fatigue among these workers. METHODS: We used a scoping review study design that included searches of MEDLINE, Embase, CAB Abstracts, Global Health, PsychInfo, CINAHL, Scopus, Academic Search Complete, Agricultural and Environmental Science Collection, ProQuest Central, Cochrane Library, Safety Lit, Homeland Security Digital Library, and Sociological Abstracts using a range of occupational search terms and terms related to working hours, sleep, and fatigue. RESULTS: Out of 3415 articles returned from our database search, 202 met all inclusion criteria. Six common outcomes related to working hours, sleep, and fatigue emerged: sleep, fatigue, work performance, injury, psychosocial stress, and chronic disease. Nearly two-thirds (59%, n = 120) of the studies were observational, of which 64% (n = 77) were cross sectional and 9% were (n = 11) longitudinal; 14% (n = 30) of the studies were reviews; and 19% (n = 39) were experimental or quasi-experimental studies. Only 25 of the 202 articles described mitigation strategies or interventions. FFs, LEOs, EMS, and WFFs were the most studied, followed by COs. CONCLUSIONS: In general, more longitudinal and experimental studies are needed to enrich the knowledge base on the consequences of long working hours, poor sleep, and fatigue in the public safety sector. Few experimental studies have tested novel approaches to fatigue mitigation in diverse sectors of public safety. This gap in research limits the decisions that may be made by employers to address fatigue as a threat to public-safety worker health and safety.


Assuntos
Saúde Ocupacional , Desempenho Profissional , Fadiga/epidemiologia , Fadiga/psicologia , Humanos , Polícia/psicologia , Sono , Tolerância ao Trabalho Programado
4.
Ann Work Expo Health ; 66(6): 714-727, 2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34919119

RESUMO

The wildland firefighter exposure and health effect (WFFEHE) study was a 2-year repeated-measures study to investigate occupational exposures and acute and subacute health effects among wildland firefighters. This manuscript describes the study rationale, design, methods, limitations, challenges, and lessons learned. The WFFEHE cohort included fire personnel ages 18-57 from six federal wildland firefighting crews in Colorado and Idaho during the 2018 and 2019 fire seasons. All wildland firefighters employed by the recruited crews were invited to participate in the study at preseason and postseason study intervals. In 2019, one of the crews also participated in a 3-day midseason study interval where workplace exposures and pre/postshift measurements were collected while at a wildland fire incident. Study components assessed cardiovascular health, pulmonary function and inflammation, kidney function, workplace exposures, and noise-induced hearing loss. Measurements included self-reported risk factors and symptoms collected through questionnaires; serum and urine biomarkers of exposure, effect, and inflammation; pulmonary function; platelet function and arterial stiffness; and audiometric testing. Throughout the study, 154 wildland firefighters participated in at least one study interval, while 144 participated in two or more study interval. This study was completed by the Centers for Disease Control and Prevention's National Institute for Occupational Safety and Health through a collaborative effort with the U.S. Department of Agriculture Forest Service, Department of the Interior National Park Service, and Skidmore College. Conducting research in the wildfire environment came with many challenges including collecting study data with study participants with changing work schedules and conducting study protocols safely and operating laboratory equipment in remote field locations. Forthcoming WFFEHE study results will contribute to the scientific evidence regarding occupational risk factors and exposures that can impact wildland firefighter health over a season and across two wildland fire seasons. This research is anticipated to lead to the development of preventive measures and policies aimed at reducing risk for wildland firefighters and aid in identifying future research needs for the wildland fire community.


Assuntos
Bombeiros , Incêndios , Perda Auditiva Provocada por Ruído , Exposição Ocupacional , Adolescente , Adulto , Humanos , Inflamação , Pessoa de Meia-Idade , Exposição Ocupacional/efeitos adversos , Estados Unidos , Adulto Jovem
5.
Environ Sci Technol ; 55(17): 11795-11804, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34488352

RESUMO

Wildland firefighters are exposed to smoke-containing particulate matter (PM) and volatile organic compounds (VOCs) while suppressing wildfires. From 2015 to 2017, the U.S. Forest Service conducted a field study collecting breathing zone measurements of PM4 (particulate matter with aerodynamic diameter ≤4 µm) on wildland firefighters from different crew types and while performing various fire suppression tasks on wildfires. Emission ratios of VOC (parts per billion; ppb): PM1 (particulate matter with aerodynamic diameter ≤1 µm; mg/m3) were calculated using data from a separate field study conducted in summer 2018, the Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE-CAN) Campaign. These emission ratios were used to estimate wildland firefighter exposure to acrolein, benzene, and formaldehyde. Results of this field sampling campaign reported that exposure to PM4 and VOC varied across wildland firefighter crew type and job task. Type 1 crews had greater exposures to both PM4 and VOCs than type 2 or type 2 initial attack crews, and wildland firefighters performing direct suppression had statistically higher exposures than those performing staging and other tasks (mean differences = 0.82 and 0.75 mg/m3; 95% confidence intervals = 0.38-1.26 and 0.41-1.08 mg/m3, respectively). Of the 81 personal exposure samples collected, 19% of measured PM4 exposures exceeded the recommended National Wildland Fire Coordinating Group occupational exposure limit (0.7 mg/m3). Wildland fire management should continue to find strategies to reduce smoke exposures for wildland firefighters.


Assuntos
Bombeiros , Incêndios , Exposição Ocupacional , Compostos Orgânicos Voláteis , Humanos , Material Particulado/análise , Fumaça/análise , Compostos Orgânicos Voláteis/análise
6.
J Expo Sci Environ Epidemiol ; 31(5): 923-929, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34285366

RESUMO

BACKGROUND: Every year thousands of wildland firefighters (WFFs) work to suppress wildfires to protect public safety, health, and property. Although much effort has been put toward mitigating air pollutant exposures for the public and WFFs, the current burden in this worker population is unclear as are the most effective exposure reduction strategies. OBJECTIVE: Quantify fireline carbon monoxide (CO) exposures in WFFs and identify predictors of exposures. METHODS: We collected 1-min breathing zone CO measurements on 246 WFFs assigned to fires between 2015 and 2017. We used generalized estimating equations to evaluate predictors of CO exposure. RESULTS: Approximately 5% of WFFs had fireline CO exposure means exceeding the National Wildfire Coordinating Group's occupational exposure limit of 16 ppm. Relative to operational breaks, direct suppression-related job tasks were associated with 56% (95% CI: 47%, 65%) higher geometric mean CO concentrations, adjusted for incident type, crew type, and fire location. WFF perception of smoke exposure was a strong predictor of measured CO exposure. SIGNIFICANCE: Specific job tasks related to direct suppression and WFF perceptions of smoke exposure are potential opportunities for targeted interventions aimed at minimizing exposure to smoke.


Assuntos
Bombeiros , Incêndios , Exposição Ocupacional , Monóxido de Carbono/análise , Humanos , Exposição Ocupacional/análise , Fumaça/análise , Estados Unidos
7.
Ann Am Thorac Soc ; 18(6): 921-930, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33938390

RESUMO

Wildland fires are diminishing air quality on a seasonal and regional basis, raising concerns about respiratory health risks to the public and occupational groups. This American Thoracic Society (ATS) workshop was convened in 2019 to meet the growing health threat of wildland fire smoke. The workshop brought together a multidisciplinary group of 19 experts, including wildland fire managers, public health officials, epidemiologists, toxicologists, and pediatric and adult pulmonologists. The workshop examined the following four major topics: 1) the science of wildland fire incidence and fire management, 2) the respiratory and cardiovascular health effects of wildland fire smoke exposure, 3) communication strategies to address these health risks, and 4) actions to address wildland fire health impacts. Through formal presentations followed by group discussion, workshop participants identified top priorities for fire management, research, communication, and public policy to address health risks of wildland fires. The workshop concluded that short-term exposure to wildland smoke causes acute respiratory health effects, especially among those with asthma and chronic obstructive pulmonary disease. Research is needed to understand long-term health effects of repeated smoke exposures across fire seasons for children, adults, and highly exposed occupational groups (especially firefighters). Other research priorities include fire data collection and modeling, toxicology of different fire fuel sources, and the efficacy of health protective measures to prevent respiratory effects of smoke exposure. The workshop committee recommends a unified federal response to the growing problem of wildland fires, including investment in fire behavior and smoke air quality modeling, research on the health impacts of smoke, and development of robust clinical and public health communication tools.


Assuntos
Poluição do Ar , Incêndios , Incêndios Florestais , Adulto , Criança , Humanos , Políticas , Fumaça/efeitos adversos , Estados Unidos/epidemiologia
8.
Sci Total Environ ; 760: 144296, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33341613

RESUMO

Throughout the United States, wildland firefighters respond to wildfires, performing arduous work in remote locations. Wildfire incidents can be an ideal environment for the transmission of infectious diseases, particularly for wildland firefighters who congregate in work and living settings. In this review, we examine how exposure to wildfire smoke can contribute to an increased likelihood of SARS-CoV-2 infection and severity of coronavirus disease (COVID-19). Human exposure to particulate matter (PM), a component of wildfire smoke, has been associated with oxidative stress and inflammatory responses; increasing the likelihood for adverse respiratory symptomology and pathology. In multiple epidemiological studies, wildfire smoke exposure has been associated with acute lower respiratory infections, such as bronchitis and pneumonia. Co-occurrence of SARS-CoV-2 infection and wildfire smoke inhalation may present an increased risk for COVID-19 illness in wildland firefighters due to PM based transport of SARS CoV-2 virus and up-regulation of angiotensin-converting enzyme II (ACE-2) (i.e. ACE-2 functions as a trans-membrane receptor, allowing the SARS-CoV-2 virus to gain entry into the epithelial cell). Wildfire smoke exposure may also increase risk for more severe COVID-19 illness such as cytokine release syndrome, hypotension, and acute respiratory distress syndrome (ARDS). Current infection control measures, including social distancing, wearing cloth masks, frequent cleaning and disinfecting of surfaces, frequent hand washing, and daily screening for COVID-19 symptoms are very important measures to reduce infections and severe health outcomes. Exposure to wildfire smoke may introduce additive or even multiplicative risk for SARS-CoV-2 infection and severity of disease in wildland firefighters. Thus, additional mitigative measures may be needed to prevent the co-occurrence of wildfire smoke exposure and SARS-CoV-2 infection.


Assuntos
COVID-19 , Coronavirus , Bombeiros , Humanos , SARS-CoV-2 , Fumaça/efeitos adversos
9.
J Occup Environ Hyg ; 16(11): 735-744, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31545144

RESUMO

Wildland firefighters engaged in fire suppression activities are often exposed to hazardous air pollutants such as polycyclic aromatic hydrocarbons (PAHs) and particulate matter (PM2.5) during wildfires with no respiratory protection. Although the most significant exposures to smoke likely occur on the fireline, wildland firefighters may also be exposed at the incident command post (ICP), an area designated for wildfire suppression support operations. Our objective was to characterize exposures of PAHs and PM2.5 near an ICP during a wildfire event in California. We collected area air samples for PAHs and PM2.5, during the first 12 days of a wildfire event. PAH area air samples were actively collected in 12-hr shifts (day and night) using XAD4-coated quartz fiber filters and XAD2 sorbent tubes and analyzed for 17 individual PAHs. Hourly area PM2.5 concentrations were measured with an Environmental Beta Attenuation Monitor. Most PAH concentrations generally had similar concentrations during the day and night. PM2.5 concentrations were higher during the day, due to increased fire activity, than at night. The highest concentrations of the 17 PAHs measured were for naphthalene, phenanthrene, and retene. The location of an ICP may be a critical factor in reducing these potential exposures to firefighters during wildfire events. Additionally, exposures could be reduced by utilizing clean air tents or sleeping trailers with HEPA filtration or setting up smaller camps in less smokey areas closer to the fireline for firefighters. Although measured exposures to PAHs for firefighters from smoke are lower at an ICP, these exposures still contribute to the overall cumulative work exposures.


Assuntos
Poluentes Ocupacionais do Ar/análise , Exposição por Inalação/análise , Exposição Ocupacional/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental/métodos , Bombeiros , Humanos , Fumaça/análise , Incêndios Florestais
10.
Environ Res ; 173: 462-468, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30981117

RESUMO

Wildland firefighters are exposed to wood smoke, which contains hazardous air pollutants, by suppressing thousands of wildfires across the U. S. each year. We estimated the relative risk of lung cancer and cardiovascular disease mortality from existing PM2.5 exposure-response relationships using measured PM4 concentrations from smoke and breathing rates from wildland firefighter field studies across different exposure scenarios. To estimate the relative risk of lung cancer (LC) and cardiovascular disease (CVD) mortality from exposure to PM2.5 from smoke, we used an existing exposure-response (ER) relationship. We estimated the daily dose of wildfire smoke PM2.5 from measured concentrations of PM4, estimated wildland firefighter breathing rates, daily shift duration (hours per day) and frequency of exposure (fire days per year and career duration). Firefighters who worked 49 days per year were exposed to a daily dose of PM4 that ranged from 0.15 mg to 0.74 mg for a 5- and 25-year career, respectively. The daily dose for firefighters working 98 days per year of PM4 ranged from 0.30 mg to 1.49 mg. Across all exposure scenarios (49 and 98 fire days per year) and career durations (5-25 years), we estimated that wildland firefighters were at an increased risk of LC (8 percent to 43 percent) and CVD (16 percent to 30 percent) mortality. This unique approach assessed long term health risks for wildland firefighters and demonstrated that wildland firefighters have an increased risk of lung cancer and cardiovascular disease mortality.


Assuntos
Doenças Cardiovasculares/mortalidade , Bombeiros , Incêndios , Neoplasias Pulmonares/mortalidade , Exposição Ocupacional/estatística & dados numéricos , Humanos , Fumaça
11.
Environ Sci Technol ; 51(11): 6461-6469, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28498656

RESUMO

Wildland firefighters suppressing wildland fires or conducting prescribed fires work long shifts during which they are exposed to high levels of wood smoke with no respiratory protection. Polycyclic aromatic hydrocarbons (PAHs) are hazardous air pollutants formed during incomplete combustion. Exposure to PAHs was measured for 21 wildland firefighters suppressing two wildland fires and 4 wildland firefighters conducting prescribed burns in California. Personal air samples were actively collected using XAD4-coated quartz fiber filters and XAD2 sorbent tubes. Samples were analyzed for 17 individual PAHs through extraction with dichloromethane and gas chromatograph-mass spectrometer analysis. Naphthalene, retene, and phenanthrene were consistently the highest measured PAHs. PAH concentrations were higher at wildland fires compared to prescribed fires and were highest for firefighters during job tasks that involve the most direct contact with smoke near an actively burning wildland fire. Although concentrations did not exceed current occupational exposure limits, wildland firefighters are exposed to PAHs not only on the fire line at wildland fires, but also while working prescribed burns and while off-duty. Characterization of occupational exposures from wildland firefighting is important to understand better any potential long-term health effects.


Assuntos
Monitoramento Ambiental , Bombeiros , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , California , Incêndios , Humanos
12.
Environ Sci Technol ; 50(21): 11965-11973, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27652495

RESUMO

The 2013 Rim Fire was the third largest wildfire in California history and burned 257 314 acres in the Sierra Nevada Mountains. We evaluated air-quality impacts of PM2.5 from smoke from the Rim Fire on receptor areas in California and Nevada. We employed two approaches to examine the air-quality impacts: (1) an evaluation of PM2.5 concentration data collected by temporary and permanent air-monitoring sites and (2) an estimation of intake fraction (iF) of PM2.5 from smoke. The Rim Fire impacted locations in the central Sierra nearest to the fire and extended to the northern Sierra Nevada Mountains of California and Nevada monitoring sites. Daily 24-h average PM2.5 concentrations measured at 22 air monitors had an average concentration of 20 µg/m3 and ranged from 0 to 450 µg/m3. The iF for PM2.5 from smoke during the active fire period was 7.4 per million, which is slightly higher than representative iF values for PM2.5 in rural areas and much lower than for urban areas. This study is a unique application of intake fraction to examine emissions-to-exposure for wildfires and emphasizes that air-quality impacts are not only localized to communities near large fires but can extend long distances and affect larger urban areas.


Assuntos
Poluentes Atmosféricos , Material Particulado , Fumaça , California , Monitoramento Ambiental , Incêndios , Humanos , Nevada
13.
Environ Health Perspect ; 123(12): 1255-64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26032647

RESUMO

BACKGROUND: Current approaches to chemical screening, prioritization, and assessment are being reenvisioned, driven by innovations in chemical safety testing, new chemical regulations, and demand for information on human and environmental impacts of chemicals. To conceptualize these changes through the lens of a prevalent disease, the Breast Cancer and Chemicals Policy project convened an interdisciplinary expert panel to investigate methods for identifying chemicals that may increase breast cancer risk. METHODS: Based on a review of current evidence, the panel identified key biological processes whose perturbation may alter breast cancer risk. We identified corresponding assays to develop the Hazard Identification Approach for Breast Carcinogens (HIA-BC), a method for detecting chemicals that may raise breast cancer risk. Finally, we conducted a literature-based pilot test of the HIA-BC. RESULTS: The HIA-BC identifies assays capable of detecting alterations to biological processes relevant to breast cancer, including cellular and molecular events, tissue changes, and factors that alter susceptibility. In the pilot test of the HIA-BC, chemicals associated with breast cancer all demonstrated genotoxic or endocrine activity, but not necessarily both. Significant data gaps persist. CONCLUSIONS: This approach could inform the development of toxicity testing that targets mechanisms relevant to breast cancer, providing a basis for identifying safer chemicals. The study identified important end points not currently evaluated by federal testing programs, including altered mammary gland development, Her2 activation, progesterone receptor activity, prolactin effects, and aspects of estrogen receptor ß activity. This approach could be extended to identify the biological processes and screening methods relevant for other common diseases.


Assuntos
Neoplasias da Mama/induzido quimicamente , Carcinógenos/toxicidade , Estrogênios/toxicidade , Mutagênicos/toxicidade , Bioensaio , Dano ao DNA , Feminino , Humanos , Projetos Piloto , Risco , Testes de Toxicidade
14.
Environ Health Perspect ; 120(5): 715-20, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22538066

RESUMO

BACKGROUND: Extreme hot weather conditions have been associated with increased morbidity and mortality, but risks are not evenly distributed throughout the population. Previously, a heat vulnerability index (HVI) was created to geographically locate populations with increased vulnerability to heat in metropolitan areas throughout the United States. OBJECTIVES: We sought to determine whether areas with higher heat vulnerability, as characterized by the HVI, experienced higher rates of morbidity and mortality on abnormally hot days. METHODS: We used Poisson regression to model the interaction of HVI and deviant days (days whose deviation of maximum temperature from the 30-year normal maximum temperature is at or above the 95th percentile) on hospitalization and mortality counts in five states participating in the Environmental Public Health Tracking Network for the years 2000 through 2007. RESULTS: The HVI was associated with higher hospitalization and mortality rates in all states on both normal days and deviant days. However, associations were significantly stronger (interaction p-value < 0.05) on deviant days for heat-related illness, acute renal failure, electrolyte imbalance, and nephritis in California, heat-related illness in Washington, all-cause mortality in New Mexico, and respiratory hospitalizations in Massachusetts. CONCLUSION: Our results suggest that the HVI may be a marker of health vulnerability in general, although it may indicate greater vulnerability to heat in some cases.


Assuntos
Clima , Saúde Ambiental , Exaustão por Calor/epidemiologia , Temperatura Alta , Saúde Pública , Suscetibilidade a Doenças , Humanos , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA