Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897791

RESUMO

Brain damage is the major cause of permanent disability and it is particularly relevant in the elderly. While most studies focused on the immediate phase of neuronal loss upon injury, much less is known about the process of axonal regeneration after damage. The development of new refined preclinical models to investigate neuronal regeneration and the recovery of brain tissue upon injury is a major unmet challenge. Here, we present a novel experimental paradigm in mice that entails the (i) tracing of cortico-callosal connections, (ii) a mechanical lesion of the motor cortex, (iii) the stereological and histological analysis of the damaged tissue, and (iv) the functional characterization of motor deficits. By combining conventional microscopy with semi-automated 3D reconstruction, this approach allows the analysis of fine subcellular structures, such as axonal terminals, with the tridimensional overview of the connectivity and tissue integrity around the lesioned area. Since this 3D reconstruction is performed in serial sections, multiple labeling can be performed by combining diverse histological markers. We provide an example of how this methodology can be used to study cellular interactions. Namely, we show the correlation between active microglial cells and the perineuronal nets that envelop parvalbumin interneurons. In conclusion, this novel experimental paradigm will contribute to a better understanding of the molecular and cellular interactions underpinning the process of cortical regeneration upon brain damage.


Assuntos
Corpo Caloso , Córtex Motor , Animais , Corpo Caloso/ultraestrutura , Interneurônios/fisiologia , Camundongos , Córtex Motor/fisiologia , Neurônios/fisiologia , Terminações Pré-Sinápticas
2.
Hum Mol Genet ; 31(22): 3897-3913, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-35766882

RESUMO

Peroxiredoxin 3 (PRDX3) encodes a mitochondrial antioxidant protein, which is essential for the control of reactive oxygen species homeostasis. So far, PRDX3 mutations are involved in mild-to-moderate progressive juvenile onset cerebellar ataxia. We aimed to unravel the molecular bases underlying the disease in an infant suffering from cerebellar ataxia that started at 19 months old and presented severe cerebellar atrophy and peripheral neuropathy early in the course of disease. By whole exome sequencing, we identified a novel homozygous mutation, PRDX3 p.D163E, which impaired the mitochondrial ROS defense system. In mouse primary cortical neurons, the exogenous expression of PRDX3 p.D163E was reduced and triggered alterations in neurite morphology and in mitochondria. Mitochondrial computational parameters showed that p.D163E led to serious mitochondrial alterations. In transfected HeLa cells expressing the mutation, mitochondria accumulation was detected by correlative light electron microscopy. Mitochondrial morphology showed severe changes, including extremely damaged outer and inner membranes with a notable cristae disorganization. Moreover, spherical structures compatible with lipid droplets were identified, which can be associated with a generalized response to stress and can be involved in the removal of unfolded proteins. In the patient's fibroblasts, PRDX3 expression was nearly absent. The biochemical analysis suggested that the mutation p.D163E would result in an unstable structure tending to form aggregates that trigger unfolded protein responses via mitochondria and endoplasmic reticulum. Altogether, our findings broaden the clinical spectrum of the recently described PRDX3-associated neurodegeneration and provide new insight into the pathological mechanisms underlying this new form of cerebellar ataxia.


Assuntos
Ataxia Cerebelar , Degenerações Espinocerebelares , Humanos , Animais , Camundongos , Peroxirredoxina III/genética , Peroxirredoxina III/metabolismo , Células HeLa , Ataxia/genética , Mutação , Proteínas Mitocondriais/genética
3.
J Vis Exp ; (173)2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34369923

RESUMO

Neuronal loss is at the core of many neuropathologies, including stroke, Alzheimer's disease, and Parkinson's disease. Different methods were developed to study the process of neuronal survival upon cytotoxic stress. Most methods are based on biochemical approaches that do not allow single-cell resolution or involve complex and costly methodologies. Presented here is a versatile, inexpensive, and effective experimental paradigm to study neuronal survival. This method takes advantage of sparse fluorescent labeling of the neurons followed by live imaging and automated quantification. To this aim, the neurons are electroporated to express fluorescent markers and co-cultured with non-electroporated neurons to easily regulate cell density and increase survival. Sparse labeling by electroporation allows a simple and robust automated quantification. In addition, fluorescent labeling can be combined with the co-expression of a gene of interest to study specific molecular pathways. Here, we present a model of stroke as a neurotoxic model, namely, the oxygen-glucose deprivation (OGD) assay, which was performed in an affordable and robust homemade hypoxic chamber. Finally, two different workflows are described using IN Cell Analyzer 2200 or the open-source ImageJ for image analysis for semi-automatic data processing. This workflow can be easily adapted to different experimental models of toxicity and scaled up for high-throughput screening. In conclusion, the described protocol provides an approachable, affordable, and effective in vitro model of neurotoxicity, which can be suitable for testing the roles of specific genes and pathways in live imaging and for high-throughput drug screening.


Assuntos
Glucose , Neurônios , Morte Celular , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura
4.
Neurobiol Dis ; 157: 105442, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34246770

RESUMO

Neuregulin 1 (NRG1) and its receptor ERBB4 are schizophrenia (SZ) risk genes that control the development of both excitatory and inhibitory cortical circuits. Most studies focused on the characterization ErbB4 deficient mice. However, ErbB4 deletion concurrently perturbs the signaling of Nrg1 and Neuregulin 3 (Nrg3), another ligand expressed in the cortex. In addition, NRG1 polymorphisms linked to SZ locate mainly in non-coding regions and they may partially reduce Nrg1 expression. Here, to study the relevance of Nrg1 partial loss-of-function in cortical circuits we characterized a recently developed haploinsufficient mouse model of Nrg1 (Nrg1tm1Lex). These mice display SZ-like behavioral deficits. The cellular and molecular underpinnings of the behavioral deficits in Nrg1tm1Lex mice remain to be established. With multiple approaches including Magnetic Resonance Spectroscopy (MRS), electrophysiology, quantitative imaging and molecular analysis we found that Nrg1 haploinsufficiency impairs the inhibitory cortical circuits. We observed changes in the expression of molecules involved in GABAergic neurotransmission, decreased density of Vglut1 excitatory buttons onto Parvalbumin interneurons and decreased frequency of spontaneous inhibitory postsynaptic currents. Moreover, we found a decreased number of Parvalbumin positive interneurons in the cortex and altered expression of Calretinin. Interestingly, we failed to detect other alterations in excitatory neurons that were previously reported in ErbB4 null mice suggesting that the Nrg1 haploinsufficiency does not entirely phenocopies ErbB4 deletions. Altogether, this study suggests that Nrg1 haploinsufficiency primarily affects the cortical inhibitory circuits in the cortex and provides new insights into the structural and molecular synaptic impairment caused by NRG1 hypofunction in a preclinical model of SZ.


Assuntos
Córtex Cerebral/metabolismo , Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Potenciais Pós-Sinápticos Inibidores/genética , Interneurônios/metabolismo , Inibição Neural/genética , Neuregulina-1/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Animais , Calbindina 2/metabolismo , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Neurônios GABAérgicos/patologia , Expressão Gênica , Haploinsuficiência , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Hipocampo/fisiopatologia , Interneurônios/patologia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Camundongos , Parvalbuminas/metabolismo , RNA Mensageiro/metabolismo , Receptor ErbB-4/genética , Ácido gama-Aminobutírico/metabolismo
5.
Oxid Med Cell Longev ; 2019: 3930186, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31583038

RESUMO

The schizophrenia risk gene NRG1 controls the formation of excitatory and inhibitory synapses in cortical circuits. While the expression of different NRG1 isoforms occurs during development, adult neurons primarily express the CRD-NRG1 isoform characterized by a highly conserved intracellular domain (NRG1-ICD). We and others have demonstrated that Nrg1 intracellular signaling promotes dendrite elongation and excitatory connections during neuronal development. However, the role of Nrg1 intracellular signaling in adult neurons and pathological conditions remains largely unaddressed. Here, we investigated the role of Nrg1 intracellular signaling in neuroprotection and stroke. Our bioinformatic analysis revealed the evolutionary conservation of the NRG1-ICD and a decrease in NRG1 expression with age in the human frontal cortex. Hence, we first evaluated whether Nrg1 signaling may affect pathological hallmarks in an in vitro model of neuronal senescence; however, our data failed to reveal a role for Nrg1 in the activation of the stress-related pathway p38 MAPK and DNA damage. Previous studies demonstrated that the soluble EGF domain of Nrg1 alleviated brain ischemia, a pathological process involving the generation of free radicals, reactive oxygen species (ROS), and excitotoxicity. Hence, we tested the hypothesis that Nrg1 intracellular signaling could be neuroprotective in stroke. We discovered that Nrg1 expression significantly increased neuronal survival upon oxygen-glucose deprivation (OGD), an established in vitro model for stroke. Notably, the specific activation of Nrg1 intracellular signaling by expression of the Nrg1-ICD protected neurons from OGD. Additionally, time-lapse experiments confirmed that Nrg1 intracellular signaling increased the survival of neurons exposed to OGD. Finally, we investigated the relevance of Nrg1 intracellular signaling in stroke in vivo. Using viral vectors, we expressed the Nrg1-ICD in cortical neurons and subsequently challenged them by a focal hemorrhagic stroke; our data indicated that Nrg1 intracellular signaling improved neuronal survival in the infarcted area. Altogether, these data highlight Nrg1 intracellular signaling as neuroprotective upon ischemic lesion both in vitro and in vivo. Given the complexity of the neurotoxic effects of stroke and the involvement of various mechanisms, such as the generation of ROS, excitotoxicity, and inflammation, further studies are required to determine the molecular bases of the neuroprotective effect of Nrg1 intracellular signaling. In conclusion, our research highlights the stimulation of Nrg1 intracellular signaling as a promising target for cortical stroke treatment.


Assuntos
Encéfalo/fisiopatologia , Neuregulina-1/genética , Neuroproteção/genética , Acidente Vascular Cerebral/genética , Animais , Humanos , Camundongos , Transdução de Sinais
6.
Biochim Biophys Acta Mol Cell Res ; 1866(9): 1433-1449, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31195049

RESUMO

Recent evidences highlight the importance of mitochondria-nucleus communication for the clinical phenotype of oxidative phosphorylation (OXPHOS) diseases. However, the participation of small non-coding RNAs (sncRNAs) in this communication has been poorly explored. We asked whether OXPHOS dysfunction alters the production of a new class of sncRNAs, mitochondrial tRNA fragments (mt tRFs), and, if so, whether mt tRFs play a physiological role and their accumulation is controlled by the action of mt tRNA modification enzymes. To address these questions, we used a cybrid model of MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes), an OXPHOS disease mostly caused by mutation m.3243A>G in the mitochondrial tRNALeu(UUR) gene. High-throughput analysis of small-RNA-Seq data indicated that m.3243A>G significantly changed the expression pattern of mt tRFs. A functional analysis of potential mt tRFs targets (performed under the assumption that these tRFs act as miRNAs) indicated an association with processes that involve the most common affected tissues in MELAS. We present evidences that mt tRFs may be biologically relevant, as one of them (mt i-tRF GluUUC), likely produced by the action of the nuclease Dicer and whose levels are Ago2 dependent, down-regulates the expression of mitochondrial pyruvate carrier 1 (MPC1), promoting the build-up of extracellular lactate. Therefore, our study underpins the idea that retrograde signaling from mitochondria is also mediated by mt tRFs. Finally, we show that accumulation of mt i-tRF GluUUC depends on the modification status of mt tRNAs, which is regulated by the action of stress-responsive miRNAs on mt tRNA modification enzymes.


Assuntos
Síndrome MELAS/genética , Síndrome MELAS/metabolismo , Mitocôndrias/metabolismo , Mutação , RNA de Transferência de Leucina/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação para Baixo , Proteínas de Ligação ao GTP , Regulação da Expressão Gênica , Células HeLa , Humanos , MicroRNAs/genética , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais , Transportadores de Ácidos Monocarboxílicos/genética , Fosforilação Oxidativa , Pequeno RNA não Traduzido , Proteínas de Ligação a RNA , Transdução de Sinais , Transcriptoma , tRNA Metiltransferases
7.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 3022-3037, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29928977

RESUMO

The pathomechanisms underlying oxidative phosphorylation (OXPHOS) diseases are not well-understood, but they involve maladaptive changes in mitochondria-nucleus communication. Many studies on the mitochondria-nucleus cross-talk triggered by mitochondrial dysfunction have focused on the role played by regulatory proteins, while the participation of miRNAs remains poorly explored. MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) is mostly caused by mutation m.3243A>G in mitochondrial tRNALeu(UUR) gene. Adverse cardiac and neurological events are the commonest causes of early death in m.3243A>G patients. Notably, the incidence of major clinical features associated with this mutation has been correlated to the level of m.3243A>G mutant mitochondrial DNA (heteroplasmy) in skeletal muscle. In this work, we used a transmitochondrial cybrid model of MELAS (100% m.3243A>G mutant mitochondrial DNA) to investigate the participation of miRNAs in the mitochondria-nucleus cross-talk associated with OXPHOS dysfunction. High-throughput analysis of small-RNA-Seq data indicated that expression of 246 miRNAs was significantly altered in MELAS cybrids. Validation of selected miRNAs, including miR-4775 and miR-218-5p, in patient muscle samples revealed miRNAs whose expression declined with high levels of mutant heteroplasmy. We show that miR-218-5p and miR-4775 are direct regulators of fetal cardiac genes such as NODAL, RHOA, ISL1 and RXRB, which are up-regulated in MELAS cybrids and in patient muscle samples with heteroplasmy above 60%. Our data clearly indicate that TGF-ß superfamily signaling and an epithelial-mesenchymal transition-like program are activated in MELAS cybrids, and suggest that down-regulation of miRNAs regulating fetal cardiac genes is a risk marker of heart failure in patients with OXPHOS diseases.


Assuntos
Transição Epitelial-Mesenquimal/genética , Insuficiência Cardíaca/genética , Síndrome MELAS/genética , MicroRNAs/genética , Miocárdio/patologia , RNA de Transferência de Leucina/genética , Linhagem Celular Tumoral , DNA Mitocondrial/genética , Conjuntos de Dados como Assunto , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Coração/crescimento & desenvolvimento , Insuficiência Cardíaca/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndrome MELAS/complicações , Síndrome MELAS/patologia , MicroRNAs/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação , Miocárdio/citologia , Miocárdio/metabolismo , Fosforilação Oxidativa , Análise de Sequência de RNA , Transdução de Sinais/genética , Proteínas da Superfamília de TGF-beta/genética , Proteínas da Superfamília de TGF-beta/metabolismo , Regulação para Cima
8.
Sci Rep ; 7(1): 6209, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740091

RESUMO

Mitochondrial diseases due to mutations in the mitochondrial (mt) DNA are heterogeneous in clinical manifestations but usually include OXPHOS dysfunction. Mechanisms by which OXPHOS dysfunction contributes to the disease phenotype invoke, apart from cell energy deficit, maladaptive responses to mitochondria-to-nucleus retrograde signaling. Here we used five different cybrid models of mtDNA diseases to demonstrate that the expression of the nuclear-encoded mt-tRNA modification enzymes TRMU, GTPBP3 and MTO1 varies in response to specific pathological mtDNA mutations, thus altering the modification status of mt-tRNAs. Importantly, we demonstrated that the expression of TRMU, GTPBP3 and MTO1 is regulated by different miRNAs, which are induced by retrograde signals like ROS and Ca2+ via different pathways. Our data suggest that the up- or down-regulation of the mt-tRNA modification enzymes is part of a cellular response to cope with a stoichiometric imbalance between mtDNA- and nuclear-encoded OXPHOS subunits. However, this miRNA-mediated response fails to provide full protection from the OXPHOS dysfunction; rather, it appears to aggravate the phenotype since transfection of the mutant cybrids with miRNA antagonists improves the energetic state of the cells, which opens up options for new therapeutic approaches.


Assuntos
Proteínas de Transporte/metabolismo , DNA Mitocondrial/genética , Proteínas de Ligação ao GTP/metabolismo , MicroRNAs/genética , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/metabolismo , Osteossarcoma/patologia , tRNA Metiltransferases/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proteínas de Transporte/genética , Proliferação de Células , Proteínas de Ligação ao GTP/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mutação , Osteossarcoma/genética , Osteossarcoma/metabolismo , Fosforilação Oxidativa , Proteínas de Ligação a RNA , Transdução de Sinais , Células Tumorais Cultivadas , tRNA Metiltransferases/genética
9.
PLoS Genet ; 13(7): e1006921, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28732077

RESUMO

Several oxidative phosphorylation (OXPHOS) diseases are caused by defects in the post-transcriptional modification of mitochondrial tRNAs (mt-tRNAs). Mutations in MTO1 or GTPBP3 impair the modification of the wobble uridine at position 5 of the pyrimidine ring and cause heart failure. Mutations in TRMU affect modification at position 2 and cause liver disease. Presently, the molecular basis of the diseases and why mutations in the different genes lead to such different clinical symptoms is poorly understood. Here we use Caenorhabditis elegans as a model organism to investigate how defects in the TRMU, GTPBP3 and MTO1 orthologues (designated as mttu-1, mtcu-1, and mtcu-2, respectively) exert their effects. We found that whereas the inactivation of each C. elegans gene is associated with a mild OXPHOS dysfunction, mutations in mtcu-1 or mtcu-2 cause changes in the expression of metabolic and mitochondrial stress response genes that are quite different from those caused by mttu-1 mutations. Our data suggest that retrograde signaling promotes defect-specific metabolic reprogramming, which is able to rescue the OXPHOS dysfunction in the single mutants by stimulating the oxidative tricarboxylic acid cycle flux through complex II. This adaptive response, however, appears to be associated with a biological cost since the single mutant worms exhibit thermosensitivity and decreased fertility and, in the case of mttu-1, longer reproductive cycle. Notably, mttu-1 worms also exhibit increased lifespan. We further show that mtcu-1; mttu-1 and mtcu-2; mttu-1 double mutants display severe growth defects and sterility. The animal models presented here support the idea that the pathological states in humans may initially develop not as a direct consequence of a bioenergetic defect, but from the cell's maladaptive response to the hypomodification status of mt-tRNAs. Our work highlights the important association of the defect-specific metabolic rewiring with the pathological phenotype, which must be taken into consideration in exploring specific therapeutic interventions.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas de Ligação ao GTP/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , tRNA Metiltransferases/genética , Animais , Caenorhabditis elegans/genética , Nucléolo Celular/genética , Modelos Animais de Doenças , Transporte de Elétrons/genética , Expressão Gênica/genética , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Mutação , Fosforilação Oxidativa , RNA de Transferência/genética , Proteínas de Ligação a RNA , Transdução de Sinais/genética
10.
RNA Biol ; 11(12): 1495-507, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25607529

RESUMO

Posttranscriptional modification of the uridine located at the wobble position (U34) of tRNAs is crucial for optimization of translation. Defects in the U34 modification of mitochondrial-tRNAs are associated with a group of rare diseases collectively characterized by the impairment of the oxidative phosphorylation system. Retrograde signaling pathways from mitochondria to nucleus are involved in the pathophysiology of these diseases. These pathways may be triggered by not only the disturbance of the mitochondrial (mt) translation caused by hypomodification of tRNAs, but also as a result of nonconventional roles of mt-tRNAs and mt-tRNA-modifying enzymes. The evolutionary conservation of these enzymes supports their importance for cell and organismal functions. Interestingly, bacterial and eukaryotic cells respond to stress by altering the expression or activity of these tRNA-modifying enzymes, which leads to changes in the modification status of tRNAs. This review summarizes recent findings about these enzymes and sets them within the previous data context.


Assuntos
Escherichia coli/metabolismo , Processamento Pós-Transcricional do RNA , RNA/metabolismo , Uridina/análogos & derivados , Uridina/metabolismo , Anticódon/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Códon/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Transferases de Grupo de Um Carbono/genética , Transferases de Grupo de Um Carbono/metabolismo , Fosforilação Oxidativa , RNA/genética , RNA Mitocondrial , RNA de Transferência Aminoácido-Específico/genética , RNA de Transferência Aminoácido-Específico/metabolismo , Transdução de Sinais
11.
Biochimie ; 94(7): 1510-20, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22386868

RESUMO

Among all RNAs, tRNA exhibits the largest number and the widest variety of post-transcriptional modifications. Modifications within the anticodon stem loop, mainly at the wobble position and purine-37, collectively contribute to stabilize the codon-anticodon pairing, maintain the translational reading frame, facilitate the engagement of the ribosomal decoding site and enable translocation of tRNA from the A-site to the P-site of the ribosome. Modifications at the wobble uridine (U34) of tRNAs reading two degenerate codons ending in purine are complex and result from the activity of two multi-enzyme pathways, the IscS-MnmA and MnmEG pathways, which independently work on positions 2 and 5 of the U34 pyrimidine ring, respectively, and from a third pathway, controlled by TrmL (YibK), that modifies the 2'-hydroxyl group of the ribose. MnmEG is the only common pathway to all the mentioned tRNAs, and involves the GTP- and FAD-dependent activity of the MnmEG complex and, in some cases, the activity of the bifunctional enzyme MnmC. The Escherichia coli MnmEG complex catalyzes the incorporation of an aminomethyl group into the C5 atom of U34 using methylene-tetrahydrofolate and glycine or ammonium as donors. The reaction requires GTP hydrolysis, probably to assemble the active site of the enzyme or to carry out substrate recognition. Inactivation of the evolutionarily conserved MnmEG pathway produces a pleiotropic phenotype in bacteria and mitochondrial dysfunction in human cell lines. While the IscS-MnmA pathway and the MnmA-mediated thiouridylation reaction are relatively well understood, we have limited information on the reactions mediated by the MnmEG, MnmC and TrmL enzymes and on the precise role of proteins MnmE and MnmG in the MnmEG complex activity. This review summarizes the present state of knowledge on these pathways and what we still need to know, with special emphasis on the MnmEG pathway.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , GTP Fosfo-Hidrolases/metabolismo , Transferases de Grupo de Um Carbono/metabolismo , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , RNA de Transferência/metabolismo , Animais , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , GTP Fosfo-Hidrolases/química , Humanos , Transferases de Grupo de Um Carbono/química
12.
Rev. mex. pediatr ; 62(2): 44-7, mar.-abr. 1995. tab
Artigo em Espanhol | LILACS | ID: lil-151372

RESUMO

Se estudiaron mediante ecocardiografía a 24 niños con fiebre reumática (FR) manifestada por corea de Sydenham "pura" (CSP). Fueron distribuidos en dos grupos de 12 enfermos cada uno. En uno se incluyeron los casos con CSP; seis de estos tuvieron reactantes de la fase aguda del proceso inflamatorio positivos (proteína C reactiva positiva y/o velocidad de sedimentación acelerada). El otro grupo se integró con los niños que tuvieron historia de artralgias, artritis transitoria o que a la auscultación tuviesen un solplo cardiaco con o sin reactantes de la fase aguda de la inflamación positivos. Ninguno de los 24 niños recibió tratamiento con antiinflamatorios. Se encontró alteración valvular mitral en 18/24 casos, hallazgo que difiere ampliamente de los informes que se han hecho sobre esta enfermedad. Se discute y se insiste en la necesidad de realizar estudios ecocardiográficos a los niños con FR, complementar su evaluación clínica; la existencia en ellos de lesión valvular puede modificar el pronóstico y el manejo integral de los niños


Assuntos
Criança , Humanos , Masculino , Feminino , Ecocardiografia , Coreia/diagnóstico , Transtornos dos Movimentos/diagnóstico , Febre Reumática/complicações , Febre Reumática/diagnóstico , Valva Mitral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA