Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 306(1): E1-E13, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24085037

RESUMO

Insulin is a major regulator of glucose metabolism, stimulating its mitochondrial oxidation in skeletal muscle cells. Mitochondria are dynamic organelles that can undergo structural remodeling in order to cope with these ever-changing metabolic demands. However, the process by which mitochondrial morphology impacts insulin signaling in the skeletal muscle cells remains uncertain. To address this question, we silenced the mitochondrial fusion proteins Mfn2 and Opa1 and assessed insulin-dependent responses in L6 rat skeletal muscle cells. We found that mitochondrial fragmentation attenuates insulin-stimulated Akt phosphorylation, glucose uptake and cell respiratory rate. Importantly, we found that insulin induces a transient rise in mitochondrial Ca(2+) uptake, which was attenuated by silencing Opa1 or Mfn2. Moreover, treatment with Ruthenium red, an inhibitor of mitochondrial Ca(2+) uptake, impairs Akt signaling without affecting mitochondrial dynamics. All together, these results suggest that control of mitochondrial Ca(2+) uptake by mitochondrial morphology is a key event for insulin-induced glucose uptake.


Assuntos
Cálcio/metabolismo , Glucose/metabolismo , Insulina/farmacologia , Mitocôndrias Musculares/ultraestrutura , Músculo Esquelético/ultraestrutura , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Anticorpos/farmacologia , Linhagem Celular , GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/fisiologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/fisiologia , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/fisiologia , Músculo Esquelético/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Ratos , Transdução de Sinais/fisiologia
2.
IUBMB Life ; 65(7): 593-601, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23671040

RESUMO

Insulin-like growth factor-1 (IGF-1) signaling is a key pathway in the control of cell growth and survival. Three critical nodes in the IGF-1 signaling pathway have been described in cardiomyocytes: protein kinase Akt/mammalian target of rapamycin (mTOR), Ras/Raf/extracellular signal-regulated kinase (ERK), and phospholipase C (PLC)/inositol 1,4,5-triphosphate (InsP3 )/Ca(2+) . The Akt/mTOR and Ras/Raf/ERK signaling arms govern survival in the settings of cardiac stress and hypertrophic growth. By contrast, PLC/InsP3 /Ca(2+) functions to regulate metabolic adaptability and gene transcription. Autophagy is a catabolic process involved in protein degradation, organelle turnover, and nonselective breakdown of cytoplasmic components during nutrient starvation or stress. In the heart, autophagy is observed in a variety of human pathologies, where it can be either adaptive or maladaptive, depending on the context. We proposed the hypothesis that IGF-1 protects the heart by rescuing the mitochondrial metabolism and the energetics state, reducing cell death and controls the potentially exacerbate autophagic response to nutritional stress. In light of the importance of IGF-1 and autophagy in the heart, we review here IGF-1 signaling and autophagy regulation in the context of cardiomyocyte nutritional stress.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Fisiológico , Autofagia , Proliferação de Células , Humanos , Mitocôndrias/metabolismo , Miócitos Cardíacos/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA