Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Ecol Evol Physiol ; 97(2): 71-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728690

RESUMO

AbstractLocomotion is essential for survival, but it requires resources such as energy and metabolites and therefore may conflict with other physiological processes that also demand resources, particularly expensive processes such as immunological responses. This possible trade-off may impose limits on either the magnitude of immune responses or the patterns of activity and performance. Previous studies have shown that invasive species may have a depressed immune response, allowing them to maintain locomotor function and reproduction even when sick. This may contribute to the ecological success of invasive species in colonization and dispersal. In contrast, noninvasive species tend to reduce activity as a response to infection. Here, we studied the impact of a simulated infection on locomotor performance and voluntary movement in the anurans Xenopus laevis (a globally invasive species) and Xenopus allofraseri (a noninvasive congeneric). We found that a simulated infection reduces locomotor performance in both species, with an accentuated effect on X. allofraseri. Voluntary movement was marginally different between species. Our data suggest that a simulated infection leads to behavioral depression and reduced locomotor performance in anurans and show that this effect is limited in the invasive X. laevis. Contrasting responses to an immune challenge have been reported in the few amphibian taxa analyzed to date and suggest relationships between ecology and immunology that deserve further investigation. Specifically, a depressed immune response may underlie a propension to invasion in some species. Whether this is a general trend for invasive species remains to be tested, but our data add to the growing body of work documenting depressed immune systems in invasive species.


Assuntos
Espécies Introduzidas , Locomoção , Xenopus laevis , Animais , Locomoção/fisiologia , Feminino , Masculino , Especificidade da Espécie , Anuros/imunologia
2.
Gen Comp Endocrinol ; 354: 114517, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615755

RESUMO

Theoretical models predict that elevated androgen and glucocorticoid levels in males during the reproductive season promote immunosuppression. However, some studies report decreased stress response during this season. This study investigated annual variation in plasma corticosterone and testosterone levels, plasma bacterial killing ability (BKA), and neutrophil to lymphocyte ratio (NLR) in free-living male toads (Rhinella icterica). Toads were sampled in the field (baseline) and 1 h-post restraint over five months, and we considered the occurrence of vocal activity. Baseline corticosterone, testosterone, and BKA showed higher values during the reproductive period, specifically in calling male toads. The NLR was similar throughout the year, but higher values were observed in calling toads. Moreover, baseline NLR and BKA were positively correlated with both testosterone and corticosterone, suggesting higher steroid levels during reproduction are associated with enhanced cellular and humoral immunity. Despite fluctuation of baseline values, post-restraint corticosterone levels remained uniform over the year, indicating that toads reached similar maximum values throughout the year. Testosterone levels decreased following restraint before one specific reproductive period but increased in response to restraint during and after this period. Meanwhile, BKA decreased due to restraint only after the reproductive period, indicating immune protection and resilience to immunosuppression by stressors associated with steroid hormones during reproduction. Our results show that baseline and stress-induced hormonal and immune regulation varies throughout the year and are associated with vocal activity in R. icterica males, indicating a possible compromise between steroids and immune function in anuran males.


Assuntos
Corticosterona , Estresse Fisiológico , Testosterona , Vocalização Animal , Animais , Masculino , Corticosterona/sangue , Testosterona/sangue , Vocalização Animal/fisiologia , Estresse Fisiológico/fisiologia , Estresse Fisiológico/imunologia , Bufonidae/sangue , Bufonidae/fisiologia , Anuros/sangue , Anuros/fisiologia , Anuros/imunologia
3.
Anim Microbiome ; 4(1): 69, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36582011

RESUMO

Microbial diversity positively influences community resilience of the host microbiome. However, extinction risk factors such as habitat specialization, narrow environmental tolerances, and exposure to anthropogenic disturbance may homogenize host-associated microbial communities critical for stress responses including disease defense. In a dataset containing 43 threatened and 90 non-threatened amphibian species across two biodiversity hotspots (Brazil's Atlantic Forest and Madagascar), we found that threatened host species carried lower skin bacterial diversity, after accounting for key environmental and host factors. The consistency of our findings across continents suggests the broad scale at which low bacteriome diversity may compromise pathogen defenses in species already burdened with the threat of extinction.

4.
Proc Natl Acad Sci U S A ; 119(15): e2103745119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377801

RESUMO

Body size and shape fundamentally determine organismal energy requirements by modulating heat and mass exchange with the environment and the costs of locomotion, thermoregulation, and maintenance. Ecologists have long used the physical linkage between morphology and energy balance to explain why the body size and shape of many organisms vary across climatic gradients, e.g., why larger endotherms are more common in colder regions. However, few modeling exercises have aimed at investigating this link from first principles. Body size evolution in bats contrasts with the patterns observed in other endotherms, probably because physical constraints on flight limit morphological adaptations. Here, we develop a biophysical model based on heat transfer and aerodynamic principles to investigate energy constraints on morphological evolution in bats. Our biophysical model predicts that the energy costs of thermoregulation and flight, respectively, impose upper and lower limits on the relationship of wing surface area to body mass (S-MR), giving rise to an optimal S-MR at which both energy costs are minimized. A comparative analysis of 278 species of bats supports the model's prediction that S-MR evolves toward an optimal shape and that the strength of selection is higher among species experiencing greater energy demands for thermoregulation in cold climates. Our study suggests that energy costs modulate the mode of morphological evolution in bats­hence shedding light on a long-standing debate over bats' conformity to ecogeographical patterns observed in other mammals­and offers a procedure for investigating complex macroecological patterns from first principles.


Assuntos
Regulação da Temperatura Corporal , Quirópteros , Voo Animal , Asas de Animais , Animais , Fenômenos Biofísicos , Tamanho Corporal , Quirópteros/anatomia & histologia , Quirópteros/fisiologia , Clima , Voo Animal/fisiologia , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia
5.
J Insect Physiol ; 136: 104330, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848182

RESUMO

A dominant perception is that small and motile ectothermic animals must use behavior to avoid exposure to critical or sub-critical temperatures impairing physiological performance. Concomitantly, volunteer exploration of extreme environments by some individuals may promote physiological adjustments and enhance ecological opportunity. Here we introduce to the literature a Thermal Decision System (TDS) which is fully modular, thermally stable, versatile, and adaptable to study navigation through thermal landscapes in insects and other small motile animals. We used a specific setting of the TDS to investigate volunteer navigation through critical cold and hot temperatures in Drosophila melanogaster. We demonstrate that a thermally bold behavior (volunteer crossings through a Critical Temperature Zone, CTZ) characterized a fraction of flies in a sample, and that such a fraction was higher in an outbred population relative to isofemale lines. As set, the TDS generated a thermal gradient within the cold and hot CTZs, and the exploration of this gradient by flies did not relate simply with a tendency to be thermally bold. Mild fasting affected thermal exploration and boldness in complex manners, but thermal boldness was evident in both fasted and fed flies. Also, thermal boldness was not associated with individual critical temperatures. Finally, some flies showed consistent thermal boldness, as flies that performed an extreme thermal cross were more likely to perform a second cross compared with untested flies. We hypothesize that a simple "avoidance principle" is not the only behavioral drive for D. melanogaster facing extreme temperatures over space, and that this pattern may characterize other small motile ectothermic animals with analogous natural history. The physiological correlates, genetic architecture, and interspecific variation of thermal boldness deserve further consideration.


Assuntos
Drosophila melanogaster , Temperatura Alta , Animais , Drosophila , Humanos , Temperatura , Voluntários
6.
J Comp Physiol B ; 192(1): 127-139, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34379176

RESUMO

Sampling blood for endocrine analysis from some species may not be practical or ethical. Quantification of hormones extracted from nontypical sample types, such as keratinized tissues, offers a less invasive alternative to the traditional collection and analysis of blood. Here, we aimed to validate assays by using parallelism and accuracy tests for quantification of testosterone, corticosterone, progesterone, and triiodothyronine (T3) in shed skins of tegu lizards. We assessed whether hormone content of sheds varied across one year similar to what was previously detected in plasma samples. In addition, we aimed to identify the phase relationship between hormone levels of shed skin and plasma levels obtained from the same animals. High frequency of shedding occurred during the active season for tegus (spring/summer), while shedding ceased during hibernation (winter). All hormones measured in shed skins exhibited seasonal changes in concentration. Levels of testosterone in shed skins of male tegus correlated positively with plasma testosterone levels, while corticosterone in both males and females exhibited an inverse relationship between sample types for the same month of collection. An inverse relationship was found when accounting for a lag time of 3 and 4 months between sheds and plasma testosterone. These results indicate that endocrine content of sheds may be confounded by factors (i.e., seasons, environmental temperature, thermoregulatory behavior, among others) that affect frequency of molting, skin blood perfusion, and therefore hormone transfer from the bloodstream and deposition in sheds of squamates.


Assuntos
Lagartos , Animais , Corticosterona , Feminino , Lagartos/fisiologia , Masculino , Progesterona , Estações do Ano , Hormônios Tireóideos
7.
Front Physiol ; 12: 769833, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955885

RESUMO

The upregulation of endogenous antioxidants (i.e., preparation for oxidative stress, POS) is part of the biochemical responses underlying the adaptation of animals to adverse environments. Despite the phylogenetic diversity of animals in which POS has been described, most studies focus on animals under controlled laboratory conditions. To address this limitation, we have recently assessed the redox metabolism in the skeletal muscle of Proceratophrys cristiceps estivating under natural settings in the Caatinga. Here, we analyzed biochemical biomarkers in the muscle of another Caatinga species, Pleurodema diplolister, during the rainy (active) and dry (estivating frogs) seasons. We aimed to determine whether P. diplolister enhances its antioxidants during estivation under field conditions and to identify any effect of species on the biochemical responses of P. diplolister and P. cristiceps associated with estivation. To do so, we measured the activities of representative enzymes of intermediary metabolism and antioxidant systems, as well as glutathione and protein carbonyl levels, in the skeletal muscle of P. diplolister. Our findings revealed the suppression of oxidative metabolism and activation of antioxidant enzymes in estivating P. diplolister compared with active specimens. No changes in oxidative damage to proteins were observed and estivating P. diplolister had lower levels of disulfide glutathione (GSSG) and disulfide-to-total glutathione ratio (GSSG/tGSH) than those observed in active individuals. When data for P. diplolister and P. cristiceps were assembled and analyzed, significant effects of species were detected on the activities of metabolic enzymes (citrate synthase, isocitric dehydrogenase, malic enzyme, and creatine kinase) and antioxidant enzymes (catalase, glutathione peroxidase and glutathione transferase), as well as on GSSG/tGSH ratio. Such effects might underlie the physiological and behavioral differences between these two species that share the same microhabitat and survival strategy (i.e., to estivate) during the dry season. Despite some peculiarities, which reflect the physiological diversity of the mechanisms associated with estivation in the Brazilian Caatinga, both P. diplolister and P. cristiceps seem to balance the suppression of oxidative pathways, the maintenance of the capacity of oxygen-independent pathways, and the activation of endogenous antioxidants to preserve muscle function and be ready to resume activity whenever the unpredictable rainy period arrives.

8.
Sci Rep ; 11(1): 21710, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741040

RESUMO

Pathogens can modify many aspects of host behavior or physiology with cascading impacts across trophic levels in terrestrial food webs. These changes include thermal tolerance of hosts, however the effects of fungal infections on thermal tolerances and behavioral responses to extreme temperatures (ET) across trophic levels have rarely been studied. We examined how a fungal pathogen, Beauveria bassiana, affects upper and lower thermal tolerance, and behavior of an herbivorous insect, Acyrthosiphon pisum, and its predator beetle, Hippodamia convergens. We compared changes in thermal tolerance limits (CTMin and CTMax), thermal boldness (voluntary exposure to ET), energetic cost (ATP) posed by each response (thermal tolerance and boldness) between healthy insects and insects infected with two fungal loads. Fungal infection reduced CTMax of both aphids and beetles, as well as CTMin of beetles. Fungal infection modified the tendency, or boldness, of aphids and predator beetles to cross either warm or cold ET zones (ETZ). ATP levels increased with pathogen infection in both insect species, and the highest ATP levels were found in individuals that crossed cold ETZ. Fungal infection narrowed the thermal tolerance range and inhibited thermal boldness behaviors to cross ET. As environmental temperatures rise, response to thermal stress will be asymmetric among members of a food web at different trophic levels, which may have implications for predator-prey interactions, food web structures, and species distributions.


Assuntos
Afídeos/microbiologia , Beauveria/fisiologia , Besouros/microbiologia , Interações Hospedeiro-Patógeno , Termotolerância , Animais
9.
J Therm Biol ; 98: 102903, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34016370

RESUMO

We compared microhabitat and body temperatures in the field with thermal preferences of Tropidurus catalanensis to investigate if they match or diverge as demonstration respectively of suitability or poor-quality of the thermal environment. As T. catalanensis is subjected to variable thermal conditions along its distribution and may be jeopardized by the climate change, we measured its thermal preferences after exposure to milder (17 °C-27 °C) and warmer (22 °C-32 °C) thermal conditions to evaluate acclimatory responses and tolerances and vulnerabilities to warming. Field body temperatures tended to be similar to minimum preferred body temperatures, and microhabitat and body temperatures in the field were cooler in the remaining comparisons with thermal preferences [preferred (Tpref), set-point range (Tset), minimum preferred (Tpref_min) and maximum preferred (Tpref_max) body temperatures], suggesting there was a constraint to warming up in nature. The minimum preferred body temperatures may be a threshold separating proper functioning from markedly noxious impacts due to progressive impairment by the cooling. Difficulties to warm and keep suitable body temperatures may jeopardize overall ecophysiological and behavioral processes with implications for maintenance, fitness, and survival. The constraints to warm may impact T. catalanensis differently depending on its body size and its properties of heat conservation (thermal inertia). Smaller and larger T. catalanensis may respectively cool down easier and have difficulties to warm up, being jeopardized by the constraints due to the cold. The warmer preferred body temperatures coupled with the cooler microhabitats and bodies in nature complicate to anticipate how individuals will respond to climate change, but the acclimation to the warmer temperatures led six of them to death, suggesting they had limited tolerance to heat and would be vulnerable to global warming.


Assuntos
Aclimatação , Lagartos/fisiologia , Animais , Temperatura Corporal , Mudança Climática , Ecossistema , Microclima , Temperatura
10.
J Exp Biol ; 224(Pt 6)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753559

RESUMO

Theoretical models predict that lizards adjust their body temperature through behavioral thermoregulation as a function of food availability. However, behavioral thermoregulation is also governed by interactions among physiological and ecological factors other than food availability, such as hydration state, and sometimes it can even conflict with the locomotor activity of animals. Here, we aimed to investigate the role of food intake and hydration state on behavioral thermoregulation and voluntary locomotor activity in the lizard Tropidurus catalanensis We hypothesized that food intake can influence behavioral thermoregulation via an interaction with hydration state. We also hypothesized that lizards should endeavor to spend as little time as possible to reach their preferred body temperature to defend other physiological and/or ecological functions. We collected lizards in the field and brought them to the laboratory to measure the preferred temperature selected in a thermal gradient and the total distance traveled by them in fed and unfed conditions and with variable hydration state. Our results showed that food consumption was the most important predictor of preferred temperature. In contrast, either the hydration state alone or its interaction with food consumption did not have important effects on the lizards' thermal preference. Also, we found that the total distance traveled by lizards was not affected by food intake and was barely affected by the hydration state. We provide an experimental approach and a robust analysis of the factors that influence behavioral thermoregulation and locomotor activity in a tropical lizard.


Assuntos
Lagartos , Animais , Regulação da Temperatura Corporal , Ingestão de Alimentos , Locomoção , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA