Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(20): 7408-7440, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38784742

RESUMO

Increased interest in chiral functional dyes has stimulated activity in the field of boron-containing helicenes over the past few years. Despite the fact that the introduction of boron endows π-conjugated scaffolds with attractive electronic and optical properties, boron helicenes have long remained underdeveloped compared to other helicenes containing main group elements. The main reason was the lack of reliable synthetic protocols to access these scaffolds. The construction of boron helicenes proceeds against steric strain, and thus the methods developed for planar systems have sometimes proven ineffective in their synthesis. Recent advances in the general boron chemistry and the synthesis of strained derivatives have opened the way to a wide variety of boron-containing helicenes. Although the number of helically chiral derivatives is still limited, these compounds are currently at the forefront of emissive materials for circularly-polarized organic light-emitting diodes (CP-OLEDs). Yet the design of good emitters is not a trivial task. In this perspective, we discuss a number of requirements that must be met to provide an excellent emissive material. These include chemical and configurational stability, emission quantum yields, luminescence dissymmetry factors, and color purity. Understanding of these parameters and some structure-property relationships should aid in the rational design of superior boron helicenes. We also present the main achievements in their synthesis and point out niches in this area, e.g. stereoselective synthesis, necessary to accelerate the development of this fascinating class of compounds and to realize their potential in OLED devices and in other fields.

2.
Chem Rec ; 23(11): e202300208, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37555789

RESUMO

Since their first demonstration, thermally activated delayed fluorescence (TADF) materials have been emerged as the most promising emitters because of their promising applications in optoelectronics, typified by organic light-emitting diodes (OLEDs). In which, the rigid oxygen bridged boron acceptor-featured (DOBNA) emitters have gained tremendous impetus for OLEDs, which is ascribed to their excellent external quantum efficiency (EQE). However, these materials often displayed severe efficiency roll-off and poor operational stability. Therefore, there needs to be a comprehensive understanding of the aspect of the molecular design and structure-property relationship. To the best of our knowledge, there is no detailed review on the structure-function outlook of DOBNA-based emitters emphasizing the effect of the nature of donor units, their number density, and substitution pattern on the physicochemical properties, excited state dynamics and OLED performance were reported. To fill this gap, herein we presented the recent advancements in DOBNA-based acceptor featured TADF materials by classifying them into several subgroups based on the molecular design i. e. donor-acceptor (D-A), D-A-D, A-D-A, and multi-resonant TADF (MR-TADF) emitters. The detailed design concepts, along with their respective physicochemical and OLED performances were summarized. Finally, the prospective of this class of materials in forthcoming OLED displays is also discussed.

3.
Front Chem ; 11: 1211345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377883

RESUMO

Over the decade, there have been developments in purely organic thermally activated delayed fluorescent (TADF) materials for organic light-emitting diodes (OLEDs). However, achieving narrow full width at half maximum (FWHM) and high external quantum efficiency (EQE) is crucial for real display industries. To overcome these hurdles, hyperfluorescence (HF) technology was proposed for next-generation OLEDs. In this technology, the TADF material was considered a sensitizing host, the so-called TADF sensitized host (TSH), for use of triplet excitons via the reverse intersystem crossing (RISC) pathway. Since most of the TADF materials show bipolar characteristics, electrically generated singlet and triplet exciton energies can be transported to the final fluorescent emitter (FE) through Förster resonance energy transfer (FRET) rather than Dexter energy transfer (DET). This mechanism is possible from the S1 state of the TSH to the S1 state of the final fluorescent dopant (FD) as a long-range energy transfer. Considering this, some reports are available based on hyperfluorescence OLEDs, but the detailed analysis for highly efficient and stable devices for commercialization was unclear. So herein, we reviewed the relevant factors based on recent advancements to build a highly efficient and stable hyperfluorescence system. The factors include an energy transfer mechanism based on spectral overlapping, TSH requirements, electroluminescence study based on exciplex and polarity system, shielding effect, DET suppression, and FD orientation. Furthermore, the outlook and future positives with new directions were discussed to build high-performance OLEDs.

4.
Angew Chem Int Ed Engl ; 62(32): e202306768, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37296070

RESUMO

Developing double boron-based emitters with extremely narrow band spectrum and high efficiency in organic light-emitting diodes (OLEDs) is crucial and challenging. Herein, we report two materials, NO-DBMR and Cz-DBMR, hinge on polycyclic heteraborin skeletons based on role-play of the highest occupied molecular orbital (HOMO) energy levels. The NO-DBMR contains an oxygen atom, whereas the Cz-DBMR has a carbazole core in the double boron-embedded ν-DABNA structure. The synthesized materials resulted in an unsymmetrical pattern for NO-DBMR and surprisingly a symmetrical pattern for Cz-DBMR. Consequently, both materials showed extremely narrow full width at half maximum (FWHM) of 14 nm in hypsochromic (pure blue) and bathochromic (Bluish green) shifted emission without losing their high color fidelity. Furthermore, both materials show high photoluminescence quantum yield (PLQY) of over 82 %, and an extremely small singlet-triplet energy gap (ΔEST ) of 0.04 eV, resulting in high reverse intersystem crossing process (kRISC ) of 105  s-1 . Due to the efficient thermally activated delayed fluorescence (TADF) characteristics, the fabricated OLEDs based on these heteraborins manifested maximum external quantum efficiency (EQEmax ) of 33.7 and 29.8 % for NO-DBMR and Cz-DBMR, respectively. This is the first work reported with this type of strategy for achieving an extremely narrow emission spectrum in hypsochromic and bathochromic shifted emissions with a similar molecular skeleton.

5.
Chem Commun (Camb) ; 59(25): 3685-3702, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36857643

RESUMO

The hunt for narrow-band emissive pure organic molecules capable of harvesting both singlet and triplet excitons for light emission has garnered enormous attention to promote the advancement of organic light-emitting diodes (OLEDs). Over the past decade, organic thermally activated delayed fluorescence (TADF) materials based on donor (D)/acceptor (A) combinations have been researched for OLEDs in wide color gamut (RGB) regions. However, due to the strong intramolecular charge-transfer (CT) state, they exhibit broad emission with full-width-at-half maximum (FWHM) > 70 nm, which deviates from being detrimental to achieving high color purity for future high-end display electronics such as high-definition TVs and ultra-high-definition TVs (UHDTVs). Recently, the new development in the sub-class of TADF emitters called multi-resonant TADF (MR-TADF) emitters based on boron/nitrogen atoms has attracted much interest in ultra-high definition OLEDs. Consequently, MR-TADF emitters are appeal to their potentiality as promising candidates in fabricating the high-efficient OLEDs due to their numerous advantages such as high photoluminescence quantum yield (PLQY), unprecedented color purity, and narrow bandwidth (FWHM ≤ 40 nm). Until now many MR-TADF materials have been developed for ultra-gamut regions with different design concepts. However, most MR-TADF-OLEDs showed ruthless external quantum efficiency (EQE) roll-off characteristics at high brightness. Such EQE roll-off characteristics were derived mainly from the low reverse intersystem crossing (kRISC) rate values. This feature article primarily focuses on the design strategies to improve kRISC for MR-TADF materials with some supportive strategies including extending charge delocalization, heavy atom introduction, multi-donor/acceptor utilization, and a hyperfluorescence system approach. Furthermore, the outlook and prospects for future developments in MR-TADF skeletons are described.

6.
Commun Chem ; 5(1): 149, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36698018

RESUMO

The subclass of multi resonant thermally activated delayed fluorescent emitters (MR-TADF) containing boron atoms has garnered significant attention in the field of organic light emitting diode (OLED) research. Among boron-based MR-TADF emitters, double boron-embedded MR-TADF (DB-MR-TADF) emitters show excellent electroluminescence performances with high photoluminescence quantum yields, narrow band emission, and beneficially small singlet-triplet energy levels in all the full-color gamut regions. This article reviews recent progress in DB-MR-TADF emitters, with particular attention to molecular design concepts, synthetic routes, optoelectronic properties, and OLED performance, giving future prospects for real-world applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA