Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(40): 29301-29307, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39285889

RESUMO

Hybrid organic-inorganic materials, both dense and porous, have gained significant attention in recent years due to their extreme tunability in terms of compositions and functional properties. A deep understanding of their intrinsic stability is crucial to accelerate the discovery of new compositions that are not only functional but also thermodynamically stable. Here, we report the first systematic experimental study of the effect of A-site cations on the thermodynamic stability of a series of hybrid manganese formate perovskites [AH]Mn[HCOO]3 with AH+ = CH3NH3 +, (CH3)2NH2 +, (CH2)3NH2 +, CH(NH2)2 +, and C(NH2)3 + using acid solution calorimetry. Our studies show that the thermodynamic stability among these does not directly correlate with their tolerance factors, in contrast to trends seen among inorganic perovskites. On the other hand the enthalpy of formation correlates linearly with the enthalpy of dissolution in aqueous hydrochloric acid of the corresponding A-site cation salt, suggesting that the interactions between the A-site cation and the framework, rather than geometric factors, dominate the energetics of these perovskites.

2.
J Am Chem Soc ; 146(35): 24296-24309, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39172075

RESUMO

Li-excess Mn-based disordered rock salt oxides (DRX) are promising Li-ion cathode materials owing to their cost-effectiveness and high theoretical capacities. It has recently been shown that Mn-rich DRX Li1+xMnyM1-x-yO2 (y ≥ 0.5, M are hypervalent ions such as Ti4+ and Nb5+) exhibit a gradual capacity increase during the first few charge-discharge cycles, which coincides with the emergence of spinel-like domains within the long-range DRX structure coined as "δ phase". Here, we systematically study the structural evolution upon heating of Mn-based DRX at different levels of delithiation to gain insight into the structural rearrangements occurring during battery cycling and the mechanism behind δ phase formation. We find in all cases that the original DRX structure relaxes to a δ phase, which in turn leads to capacity enhancement. Synchrotron X-ray and neutron diffraction were employed to examine the structure of the δ phase, revealing that selective migration of Li and Mn/Ti cations to different crystallographic sites within the DRX structure leads to the observed structural rearrangements. Additionally, we show that both Mn-rich (y ≥ 0.5) and Mn-poor (y < 0.5) DRX can thermally relax into a δ phase after delithiation, but the relaxation processes in these distinct compositions lead to different domain structures. Thermochemical studies and in situ heating XRD experiments further indicate that the structural relaxation has a larger thermodynamic driving force and a lower activation energy for Mn-rich DRX, as compared to Mn-poor systems, which underpins why this structural evolution is only observed for Mn-rich systems during battery cycling.

3.
Inorg Chem ; 63(29): 13468-13473, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38970479

RESUMO

Neodymium monoxide (NdO) is a metastable rare earth oxide material with a unique electronic structure, which has potential applications across various fields such as semiconductors, energy, catalysis, laser technology, and advanced communications. Despite its promising attributes, the thermodynamic properties of NdO remain unexplored. In this study, high pressure, high temperature phases of neodymium monoxide (NdO, with a rocksalt structure) and body-centered cubic (bcc) Nd metal were synthesized at 5 GPa and 1473 K. X-ray photoelectron spectroscopy (XPS) measurements indicate that the Nd 3d peak shifts to higher energy in NdO relative to Nd2O3, suggesting the possibility of complex electronic states in NdO. Formation enthalpies for the reaction 1/3Nd2O3 + 1/3bcc Nd = NdO obtained from high temperature solution calorimetry in molten sodium molybdate and for the reaction dhcp Nd (metal) = bcc Nd (metal) from differential scanning calorimetry are 25.98 ± 8.65 and 5.2 kJ/mol, respectively. Utilizing these enthalpy values, we calculated the pressure-temperature boundary for the reaction 1/3 bcc Nd + 1/3Nd2O3 = NdO, which has a negative P-T slope of -1.68× 10-4 GPa/K. These insights reveal the high pressure behavior of NdO and neodymium metal, underscoring their potential utility in technological applications.

4.
Proc Natl Acad Sci U S A ; 121(12): e2321540121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483993

RESUMO

Nitrogen doped lutetium hydride has drawn global attention in the pursuit of room-temperature superconductivity near ambient pressure and temperature. However, variable synthesis techniques and uncertainty surrounding nitrogen concentration have contributed to extensive debate within the scientific community about this material and its properties. We used a solid-state approach to synthesize nitrogen doped lutetium hydride at high pressure and temperature (HPT) and analyzed the residual starting materials to determine its nitrogen content. High temperature oxide melt solution calorimetry determined the formation enthalpy of LuH1.96N0.02 (LHN) from LuH2 and LuN to be -28.4 ± 11.4 kJ/mol. Magnetic measurements indicated diamagnetism which increased with nitrogen content. Ambient pressure conductivity measurements observed metallic behavior from 5 to 350 K, and the constant and parabolic magnetoresistance changed with increasing temperature. High pressure conductivity measurements revealed that LHN does not exhibit superconductivity up to 26.6 GPa. We compressed LHN in a diamond anvil cell to 13.7 GPa and measured the Raman signal at each step, with no evidence of any phase transition. Despite the absence of superconductivity, a color change from blue to purple to red was observed with increasing pressure. Thus, our findings confirm the thermodynamic stability of LHN, do not support superconductivity, and provide insights into the origins of its diamagnetism.

5.
ACS Appl Mater Interfaces ; 15(50): 58984-58993, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38051915

RESUMO

Aluminum hydroxide, an abundant mineral found in nature, exists in four polymorphs: gibbsite, bayerite, nordstrandite, and doyleite. Among these polymorphs gibbsite, bayerite, and commercially synthesized amorphous aluminum hydroxide have been investigated as sorbent materials for lithium extraction from sulfate solutions. The amorphous form of Al(OH)3 exhibits a reactivity higher than that of the naturally occurring crystalline polymorphs in terms of extracting Li+ ions. This study employed high-temperature oxide melt solution calorimetry to explore the energetics of the sorbent polymorphs. The enthalpic stability order was measured to be gibbsite > bayerite > amorphous Al(OH)3. The least stable form, amorphous Al(OH)3, undergoes a spontaneous reaction with lithium, resulting in the formation of a stable layered double hydroxide phase. Consequently, amorphous Al(OH)3 shows promise as a sorbent material for selectively extracting lithium from clay mineral leachate solutions. This research demonstrates the selective direct extraction of Li+ ions using amorphous aluminum hydroxide through a liquid-solid lithiation reaction, followed by acid-free delithiation and relithiation processes, achieving an extraction efficiency of 86%, and the maximum capacity was 37.86 mg·g-1 in a single step during lithiation. With high selectivity during lithiation and nearly complete recoverability of the sorbent material during delithiation, this method presents a circular economy model. Furthermore, a life cycle analysis was conducted to illustrate the environmental advantages of replacing the conventional soda ash-based precipitation process with this method, along with a simple operational cost analysis to evaluate reagent and fuel expenses.

6.
J Phys Chem C Nanomater Interfaces ; 127(39): 19520-19526, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37817918

RESUMO

We report the first experimental and theoretical evaluation of the thermodynamic driving force for the reaction of metal-organic framework (MOF) materials with carbon dioxide, leading to a metal-organic carbonate phase. Carbonation upon exposure of MOFs to CO2 is a significant concern for the design and deployment of such materials in carbon storage technologies, and this work shows that the formation of a carbonate material from the popular SOD-topology framework material ZIF-8, as well as its dense-packed dia-topology polymorph, is significantly exothermic. With knowledge of the crystal structure of the starting and final phases in the carbonation reaction, we have also identified periodic density functional theory approaches that most closely reproduce the measured reaction enthalpies. This development now permits the use of advanced theoretical calculations to calculate the driving forces behind the carbonation of zeolitic imidazolate frameworks with reasonable accuracy.

7.
Chem Mater ; 35(17): 7189-7195, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37719037

RESUMO

We report the first systematic study experimentally investigating the effect of changes to the divalent metal node on the thermodynamic stability of three-dimensional (3D) and two-dimensional (2D) zeolitic imidazolate frameworks (ZIFs) based on 2-methylimidazolate linkers. In particular, the comparison of enthalpies of formation for materials based on cobalt, copper, and zinc suggests that the use of nodes with larger ionic radius metals leads to the stabilization of the porous sodalite topology with respect to the corresponding higher-density diamondoid (dia)-topology polymorphs. The stabilizing effect of metals is dependent on the framework topology and dimensionality. With previous works pointing to solvent-mediated transformation of 2D ZIF-L structures to their 3D analogues in the sodalite topology, thermodynamic measurements show that contrary to popular belief, the 2D frameworks are energetically stable, thus shedding light on the energetic landscape of these materials. Additionally, the calorimetric data confirm that a change in the dimensionality (3D → 2D) and the presence of structural water within the framework can stabilize structures by as much as 40 kJ·mol-1, making the formation of zinc-based ZIF-L material under such conditions thermodynamically preferred to the formation of both ZIF-8 and its dense, dia-topology polymorph.

8.
Philos Trans A Math Phys Eng Sci ; 381(2259): 20220334, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37691468

RESUMO

This paper is based on a lecture Navrotsky gave honouring the memory of Paul McMillan. It summarizes our recent findings in the thermodynamics of hybrid materials including metal organic frameworks (MOFs), polymer-derived ceramics (PDCs) and ionic organic-inorganic compounds. This work describes the main structure types and their corresponding thermodynamic stability, obtained from calorimetric measurements in our laboratory. The effects of linker substituent and framework topology on the thermodynamic stability of isostructural zeolitic imidazolate frameworks and other MOFs are discussed. The paper documents the effects of interdomain interaction and bonding speciation on the thermodynamic stability of various PDC compositions, including SiC, SiOC and SiCN systems. The paper further describes effects of different cations on the thermodynamic stability of selected ionic organic-inorganic compounds. Similarities and differences among these materials are emphasized. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.

9.
J Phys Chem C Nanomater Interfaces ; 127(36): 17754-17760, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37736295

RESUMO

This study experimentally explores the energetics for the formation of boron-imidazolate frameworks (BIFs), which are synthesized by mechanochemistry. The topologically similar frameworks employ the same tetratopic linker based on tetrakis(imidazolyl)boric acid but differ in the monovalent cation metal nodes. This permits assessment of the stabilizing effect of metal nodes in frameworks with sodalite (SOD) and diamondoid (dia) topologies. The enthalpy of formation from endmembers (metal oxide and linker), which define thermodynamic stability of the structures, has been determined by use of acid solution calorimetry. The results show that heavier metal atoms in the node promote greater energetic stabilization of denser structures. Overall, in BIFs the relation between cation descriptors (ionic radius and electronegativity) and thermodynamic stability depends on framework topology. Thermodynamic stability increases with the metallic character of the cation employed as the metal node, independent of the framework topology. The results suggest unifying aspects for thermodynamic stabilization across MOF systems.

10.
Molecules ; 28(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375178

RESUMO

The paper analyzes the relationships among acid-base interactions in various oxide systems and their thermodynamics. Extensive data on enthalpies of solution of binary oxides in oxide melts of several compositions, obtained by high-temperature oxide melt solution calorimetry at 700 and 800 °C, are systematized and analyzed. Oxides with low electronegativity, namely the alkali and alkaline earth oxides, which are strong oxide ion donors, show enthalpies of solution that have negative values greater than -100 kJ per mole of oxide ion. Their enthalpies of solution become more negative with decreasing electronegativity in the order Li, Na, K and Mg, Ca, Sr, Ba in both of the commonly used molten oxide calorimetric solvents: sodium molybdate and lead borate. Oxides with high electronegativity, including P2O5, SiO2, GeO2, and other acidic oxides, dissolve more exothermically in the less acidic solvent (lead borate). The remaining oxides, with intermediate electronegativity (amphoteric oxides) have enthalpies of solution of between +50 and -100 kJ/mol, with many close to zero. More limited data for the enthalpies of solution of oxides in multicomponent aluminosilicate melts at higher temperature are also discussed. Overall, the ionic model combined with the Lux-Flood description of acid-base reactions provide a consistent and useful interpretation of the data and their application for understanding the thermodynamic stability of ternary oxide systems in solid and liquid states.

11.
Dalton Trans ; 52(17): 5771-5779, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37038971

RESUMO

This study concerns energetics of formation and the stability in high water partial pressure of BaLnCo2O6-δ, (Ln = La, Pr, Nd, and Gd) (BLnC) and BaGd1-xLaxCo2O6-δ, where x = 0.2, 0.5, and 0.7 (BGLC) double perovskite cobaltites. Those materials are extensively studied due to their potential applications as a positrode in electrochemical devices. Therefore, their stability under such conditions is a key issue. All investigated materials are thermodynamically stable relative to binary oxides and exhibit strongly exothermic enthalpies of formation. Moreover, BaGd0.3La0.7Co2O6-δ and BaGd0.8La0.2Co2O6-δ remain the main perovskite structure up to 3 bars of water vapor at 400 °C. At higher steam pressure, reaching 10 bar at 300 °C, the partial decomposition to constituent oxides and hydroxides was observed. The BGLC compounds exhibit higher negative formation enthalpies in comparison to single-Ln compositions, which does not translate into higher chemical stability under high steam pressures since the BLnC series retained the main perovskite structure at higher temperatures as well as in higher water vapor pressures.

12.
Phys Chem Chem Phys ; 25(13): 9208-9215, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36919378

RESUMO

A group of multi-component oxides based on BaZrO3 have been prepared using a solid-state reaction method and examined in terms of their water uptake and thermodynamics of formation. Depending on the type and amount of acceptor substitution, the synthesized compounds exhibit various proton defect concentrations, reaching up to 0.2 mol/mol for a compound containing 10 different elements in the B-sublattice, where 50% of them are acceptors. For the most promising materials, van't Hoff plots were created and the enthalpies and entropies of hydration were calculated. At higher temperatures, these parameters do not differ from the values for the reference yttrium doped barium zirconate. However, at lower temperatures they are more negative, indicating a more exothermic process of proton incorporation.

13.
Materials (Basel) ; 16(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36836980

RESUMO

Thorium was a part of energy infrastructure in the 19th century due to the refractory and electronic properties of its dioxide. It will be a part of future energy infrastructure as the most abundant energy reserve based on nuclear fission. This paper discusses the solid-state chemistry of the monoxides and related rocksalt phases of thorium and the rare earths, both at atmospheric and at high pressure. The existence of solid thorium monoxide was first suggested more than 100 years ago; however, it was never obtained in bulk and has been studied mostly theoretically. Monoxides of lanthanides from Eu to Ho are ferromagnetic semiconductors sought for spintronics and were studied in thin films. La to Sm metallic monoxides were synthesized in bulk at pressures below 5 GPa. Recently, ThO formation in thin films has been reported and the stability of bulk ThO at high pressure was theoretically predicted based on first principles computations at 0 K. New ab initio computations were performed accounting for temperature effects up to 1000 K using lattice dynamics in the quasi-harmonic approximation. New computational results confirm the stabilization of pure ThO above 30 GPa and suggest the possibility of high-pressure synthesis of (Th,Nd)O at 1000 K and 5 GPa.

14.
ACS Omega ; 7(46): 42482-42488, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36440143

RESUMO

Due to higher packing density, lower working potential, and area specific impedance, the MLi2Ti6O14 (M = 2Na, Sr, Ba, and Pb) titanate family is a potential alternative to zero-strain Li4Ti5O12 anodes used commercially in Li-ion batteries. However, the exact lithiation mechanism in these compounds remains unclear. Despite its structural similarity, MLi2Ti6O14 behaves differently depending on charge and size of the metal ion, hosting 1.3, 2.7, 2.9, and 4.4 Li per formula unit, giving charge capacity values from 60 to 160 mAh/g in contrast to the theoretical capacity trend. However, high-temperature oxide melt solution calorimetry measurements confirm strong correlation between thermodynamic stability and the observed capacity. The main factors controlling energetics are strong acid-base interactions between basic oxides MO, Li2O and acidic TiO2, size of the cation, and compressive strain. Accordingly, the energetic stability diminishes in the order Na2Li2Ti6O14 > BaLi2Ti6O14 > SrLi2Ti6O14 > PbLi2Ti6O14. This sequence is similar to that in many other oxide systems. This work exhibits that thermodynamic systematics can serve as guidelines for the choice of composition for building better batteries.

15.
Proc Natl Acad Sci U S A ; 119(36): e2209630119, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36044552

RESUMO

The melting point is a fundamental property that is time-consuming to measure or compute, thus hindering high-throughput analyses of melting relations and phase diagrams over large sets of candidate compounds. To address this, we build a machine learning model, trained on a database of ∼10,000 compounds, that can predict the melting temperature in a fraction of a second. The model, made publicly available online, features graph neural network and residual neural network architectures. We demonstrate the model's usefulness in diverse applications. For the purpose of materials design and discovery, we show that it can quickly discover novel multicomponent materials with high melting points. These predictions are confirmed by density functional theory calculations and experimentally validated. In an application to planetary science and geology, we employ the model to analyze the melting temperatures of ∼4,800 minerals to uncover correlations relevant to the study of mineral evolution.

16.
Dalton Trans ; 51(29): 11169-11179, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35801572

RESUMO

Mineral exploration forms a key approach for unveiling functional battery electrode materials. The synthetic preparation of naturally found minerals and their derivatives can aid in designing of new electrodes. Herein, saranchinaite Na2Cu(SO4)2 and its hydrated derivative kröhnkite Na2Cu(SO4)2·2H2O bisulfate minerals have been prepared using a facile spray drying route for the first time. The phase stability relation during the (de)hydration process was examined synergising in situ X-ray diffraction and thermochemical studies. Kröhnkite forms the thermodynamically stable phase as the hydration of saranchinaite to kröhnkite is highly exothermic (-51.51 ± 0.63 kJ mol-1). Structurally, kröhnkite offers a facile 2D pathway for Na+ ion migration resulting in 20 times higher total conductivity than saranchinaite at 60 °C. Both compounds exhibited a conversion redox mechanism for Li-ion storage with the first discharge capacity exceeding 650 mA h g-1 (at 2 mA g-1vs. Li+/Li) upon discharge up to 0.05 V. Post-mortem analysis revealed that the presence of metallic Cu in the discharged state is responsible for high irreversibility during galvanostatic cycling. This study reaffirms the exploration of Cu-based polyanionic sulfates, which while having limited (de)insertion properties, can be harnessed for conversion-based electrode materials for batteries.

17.
Inorg Chem ; 61(19): 7590-7596, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35486112

RESUMO

The thermodynamic stability of rare earth (RE) materials plays a key role in the design of separation and recycling processes for RE elements. Thermodynamic stability is fundamentally influenced by the lanthanide contraction, as observed in the systematic reduction of unit cell volumes with increasing atomic number. RE materials are found in the form of solids having primary bonds in three dimensions (3D materials) as well as ones with primary bonds in two dimensions (2D materials) whose layers are held together by weak van der Waals (vdW) forces. While studies of synthesis, structure, and physical properties of 2D RE materials are numerous, no systematic research has compared their thermodynamic stability to that of 3D materials. In the present work, RE oxychlorides (REOCls), which display a structural transition from a 3D-polyhedral network (PbFCl-type) to a vdW-bonded layered one (SmSI-type) as the RE size decreases, were all synthesized by the flux method. High-temperature oxide melt solution calorimetry was used to determine their formation enthalpies to enable Born-Haber cycles to calculate lattice energies. Our results indicate that REOCl compounds are thermodynamically stable when compared to their binary oxides and chlorides. The lattice energies of 3D REOCls increase with decreasing RE size yet are insensitive to unit cell volumes for 2D REOCls. This is caused by interatomic interactions parallel and perpendicular to layers in the SmSI-type REOCls, causing a different structure response to the lanthanide contraction than 3D RE materials.

18.
J Am Chem Soc ; 144(18): 8223-8230, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35482958

RESUMO

A recently discovered new family of 3D halide perovskites with the general formula (A)1-x(en)x(Pb)1-0.7x(X)3-0.4x (A = MA, FA; X = Br, I; MA = methylammonium, FA = formamidinium, en = ethylenediammonium) is referred to as "hollow" perovskites owing to extensive Pb and X vacancies created on incorporation of en cations in the 3D network. The "hollow" motif allows fine tuning of optical, electronic, and transport properties and bestowing good environmental stability proportional to en loading. To shed light on the origin of the apparent stability of these materials, we performed detailed thermochemical studies, using room temperature solution calorimetry combined with density functional theory simulations on three different families of "hollow" perovskites namely en/FAPbI3, en/MAPbI3, and en/FAPbBr3. We found that the bromide perovskites are more energetically stable compared to iodide perovskites in the FA-based hollow compounds, as shown by the measured enthalpies of formation and the calculated formation energies. The least stable FAPbI3 gains stability on incorporation of the en cation, whereas FAPbBr3 becomes less stable with en loading. This behavior is attributed to the difference in the 3D cage size in the bromide and iodide perovskites. Configurational entropy, which arises from randomly distributed cation and anion vacancies, plays a significant role in stabilizing these "hollow" perovskite structures despite small differences in their formation enthalpies. With the increased vacancy defect population, we have also examined halide ion migration in the FA-based "hollow" perovskites and found that the migration energy barriers become smaller with the increasing en content.

19.
Nat Mater ; 21(5): 490, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35468943
20.
Environ Sci Technol ; 55(24): 16445-16454, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34882383

RESUMO

Over 60 years of nuclear activities have resulted in a global legacy of radioactive wastes, with uranium considered a key radionuclide in both disposal and contaminated land scenarios. With the understanding that U has been incorporated into a range of iron (oxyhydr)oxides, these minerals may be considered a secondary barrier to the migration of radionuclides in the environment. However, the long-term stability of U-incorporated iron (oxyhydr)oxides is largely unknown, with the end-fate of incorporated species potentially impacted by biogeochemical processes. In particular, studies show that significant electron transfer may occur between stable iron (oxyhydr)oxides such as goethite and adsorbed Fe(II). These interactions can also induce varying degrees of iron (oxyhydr)oxide recrystallization (<4% to >90%). Here, the fate of U(VI)-incorporated goethite during exposure to Fe(II) was investigated using geochemical analysis and X-ray absorption spectroscopy (XAS). Analysis of XAS spectra revealed that incorporated U(VI) was reduced to U(V) as the reaction with Fe(II) progressed, with minimal recrystallization (approximately 2%) of the goethite phase. These results therefore indicate that U may remain incorporated within goethite as U(V) even under iron-reducing conditions. This develops the concept of iron (oxyhydr)oxides acting as a secondary barrier to radionuclide migration in the environment.


Assuntos
Compostos Férricos , Compostos de Ferro , Compostos Ferrosos , Minerais , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA