Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080438

RESUMO

The commercial low-pressure column chromatographic 99Mo/99mTc generator represents a reliable source of onsite, ready-to-use 99mTc for industrial applications. These generators use fission-produced 99Mo of high specific activity, posing serious production challenges and raising proliferation concerns. Therefore, many concepts are aimed at using low-specific-activity (LSA) 99Mo. Nonetheless, the main roadblock is the low sorption capacity of the used alumina (Al2O3). This study investigates the feasibility of using commercial alumina incorporated with LSA 99Mo to develop a useful 99Mo/99mTc generator for industrial radiotracer applications. First, the adsorption profiles of some commercial alumina sorbents for LSA 99Mo were tested under different experimental conditions. Then, the potential materials to develop a 99Mo/99mTc generator were selected and evaluated regarding elution yield of 99mTc and purity. Among the sorbents investigated in this study, mesoporous alumina (SA-517747) presented a unique sorption-elution profile. It demonstrated a high equilibrium and dynamic sorption capacity of 148 ± 8 and 108 ± 6 mg Mo/g. Furthermore, 99mTc was eluted with high yield and adequate chemical, radiochemical, and radionuclidic purity. Therefore, this approach provides an efficient and cost-effective way to supply onsite 99mTc for radiotracer applications independent of fission-produced 99Mo technology.


Assuntos
Óxido de Alumínio , Tecnécio , Óxido de Alumínio/química , Molibdênio/química , Radioisótopos/química , Compostos Radiofarmacêuticos/química , Tecnécio/química
2.
Front Chem ; 10: 926258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936080

RESUMO

The continuing rapid expansion of 99mTc diagnostic agents always calls for scaling up 99mTc production to cover increasing clinical demand. Nevertheless, 99mTc availability depends mainly on the fission-produced 99Mo supply. This supply is seriously influenced during renewed emergency periods, such as the past 99Mo production crisis or the current COVID-19 pandemic. Consequently, these interruptions have promoted the need for 99mTc production through alternative strategies capable of providing clinical-grade 99mTc with high purity. In the light of this context, this review illustrates diverse production routes that either have commercially been used or new strategies that offer potential solutions to promote a rapid production growth of 99mTc. These techniques have been selected, highlighted, and evaluated to imply their impact on developing 99mTc production. Furthermore, their advantages and limitations, current situation, and long-term perspective were also discussed. It appears that, on the one hand, careful attention needs to be devoted to enhancing the 99Mo economy. It can be achieved by utilizing 98Mo neutron activation in commercial nuclear power reactors and using accelerator-based 99Mo production, especially the photonuclear transmutation strategy. On the other hand, more research efforts should be devoted to widening the utility of 99Mo/99mTc generators, which incorporate nanomaterial-based sorbents and promote their development, validation, and full automization in the near future. These strategies are expected to play a vital role in providing sufficient clinical-grade 99mTc, resulting in a reasonable cost per patient dose.

3.
Nanomaterials (Basel) ; 12(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35564296

RESUMO

99Mo/99mTc generators play a significant role in supplying 99mTc for diagnostic interventions in nuclear medicine. However, the applicability of using low specific activity (LSA) 99Mo asks for sorbents with high sorption capacity. Herein, this study aims to evaluate the sorption behavior of LSA 99Mo towards several CeO2 nano-sorbents developed in our laboratory. These nanomaterials were prepared by wet chemical precipitation (CP) and hydrothermal (HT) approaches. Then, they were characterized using XRD, BET, FE-SEM, and zeta potential measurements. Additionally, we evaluated the sorption profile of carrier-added (CA) 99Mo onto each material under different experimental parameters. These parameters include pH, initial concentration of molybdate solution, contact time, and temperature. Furthermore, the maximum sorption capacities were evaluated. The results reveal that out of the synthesized CeO2 nanoparticles (NPs) materials, the sorption capacity of HT-1 and CP-2 reach 192 ± 10 and 184 ± 12 mg Mo·g-1, respectively. For both materials, the sorption kinetics and isotherm data agree with the Elovich and Freundlich models, respectively. Moreover, the diffusion study demonstrates that the sorption processes can be described by pore diffusion (for HT-synthesis route 1) and film diffusion (for CP-synthesis route 2). Furthermore, the thermodynamic parameters indicate that the Mo sorption onto both materials is a spontaneous and endothermic process. Consequently, it appears that HT-1 and CP-2 have favorable sorption profiles and high sorption capacities for CA-99Mo. Therefore, they are potential candidates for producing a 99Mo/99mTc radionuclide generator by using LSA 99Mo.

4.
Appl Radiat Isot ; 129: 67-75, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28822270

RESUMO

Nanostructured materials attracted considerable attention because of its high surface area to volume ratio resulting from their nano-scale dimensions. This class of sorbents is expected to have a potential impact on enhancement the efficacy of radioisotope generators for diagnostic and therapeutic applications in nuclear medicine. This review provides a summary on the importance of nanostructured materials as effective sorbents for the development of clinical-scale radioisotope generators and outlining the assessment of recent developments, key challenges and promising access to the near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA