RESUMO
In our continuous efforts to find out leads against the enzyme 15-lipoxygenase (15-LOX), the current study deals with the synthesis of a series of new N-alkyl/aralkyl/aryl derivatives of 2-(4-ethyl-5-(1-phenylcarbamoyl)piperidine-4H-1,2,4-triazol-3-ylthio)methylacetamide (7a-n) with anti-LOX activities. The synthesis was started by reacting phenylisocyanate with isonipecotate that sequentially converted into N-substituted ester (1), hydrazide (2), semicarbazide (3) and N-ethylated 5-(1-phenylcarbamoyl)piperidine-1,2,4-triazole (4). The final compounds, 7a-n, were obtained by reacting 4 with various N-alkyl/aralkyl/aryl electrophiles. Both the intermediates and target compounds were characterized by FTIR, 1H, 13C NMR spectroscopy, EI-MS and HR-EI-MS spectrometry and screened against soybean 15-LOX by chemiluminescence method. The eight compounds 7e, 7j, 7h, 7a, 7g, 7b, 7n, 7c showed potent inhibitory activities against 15-LOX with values ranging from IC50 0.36 ± 0.15 µM (7e) to IC50 6.75 ± 0.17 µM (7c) compared with the reference quercetin (IC50 4.86 ± 0.14 µM) and baicalein (IC50 2.24 ± 0.13 µM). Two analogues (7l, 7f) had significantly outstanding inhibitory potential with IC50 values 12.15 ± 0.23 µM and 15.54 ± 0.26 µM, whereas, the derivatives 7i, and 7d displayed IC50 values of 21.56 ± 0.27 µM, 23.59 ± 0.24 µM and the compounds 7k, 7m were found inactive. All analogues exhibited blood mononuclear cells (MNCs) viability >75 % at 0.25 mM concentration as determined by MTT method. Calculated pharmacokinetic properties projected good lipophilicity, bioavailability and drug-likeness properties and did not violate Lipinski's/Veber rule. Molecular docking studies revealed lower binding free energies of all the derivatives than the reference compounds. The binding free energies were -9.8 kcal/mol, -9.70 k/mol and -9.20 kcal/mol for 7j, 7h and 7e, respectively, compared with the standard quercetin (-8.47 kcal/mol) and baicalein (-8.98 kcal/mol). The docked ligands formed hydrogen bonds with the amino acid residues Gln598 (7e), Arg260, Val 126 (7h), Gln762, Gln574, Thr443, Arg580 (7j) while other hydrophobic interactions observed therein further stabilized the complexes. The results of density functional theory (DFT) revealed that analogues with more stabilized lower unoccupied molecular orbital (LUMO) had significant enzyme inhibitory activity. The data collectively supports these molecules as leads against 15-LOX and demand further investigations as anti-inflammatory agents.
RESUMO
Inflammation is a multifaceted phenomenon triggered by potentially active mediators acutely released arachidonic acid metabolites partially in lipoxygenase (LOX) pathway which are primarily accountable for causing several diseases in humans. It is widely believed that an inhibitor of the LOX pathway represents a rational approach for designing more potent antiinflammatory leads with druggable super safety profiles. In our continual efforts in search for anti-LOX molecules, the present work was to design a new series of N-alkyl/aralkyl/aryl derivatives (7a-o) of 4-phenyl-5-(1-phenylcarbamoylpiperidine)-4H-1,2,4-triazole-3-thiol which was commenced in seriate formation of phenylcarbamoyl derivative (1), hydrazide (2), semicarbazide (3) and 4-phenyl-5-(1-phenylcarbamoylpiperidine)-4H-1,2,4-triazole-3-thiol (4). The aimed compounds were obtained by reacting 4-phenyl-5-(1-phenylcarbamoylpiperidine)-4H-1,2,4-triazole-3-thiol with assorted N-alkyl/aralkyl/aryl electrophiles. All compounds were characterized by FTIR, 1H-, 13C-NMR spectroscopy, EI-MS and HR-EI-MS spectrometry and screened against soybean 15-LOX for their inhibitory potential using chemiluminescence method. All the compounds except 7m and 7h inhibited the said enzyme remarkably. Compounds 7c,7l, 7j and 7a displayed potent inhibitions ranging from IC50 1.92 ± 0.13 µM to 7.65 ± 0.12 µM. Other analogues 7g, 7o, 7e, 7b, 7d, 7k and 7n revealed excellent inhibitory values ranging from IC50 12.45 ± 0.38 µM to 24.81 ± 0.47 µM. All these compounds did not reveal DPPH radical scavenging activity. Compounds 7i-o maintained > 90 % human blood mononuclear cells (MNCs) viability at 0.125 mM as assayed by MTT whilst others were found toxic. Pharmacokinetic profiles predicted good oral bioavailability and drug-likeness properties of the active scaffolds. SAR investigations showed that phenyl substituted analogue on amide side decreased inhibitory activity due to inductive and mesomeric effects while the mono-alkyl substituted analogues were more active than disubstituted ones and ortho substituted analogues were more potent than meta substituted ones. MD simulation predicted the stability of the 7c ligand and receptor complex as shown by their relative RMSD (root mean square deviation) values. Molecular docking studies displayed hydrogen bonding between the compounds and the enzyme with Arg378 which was common in 7n, 7g, 7h and baicalein. In 7a and quercetin, hydrogen bonding was established through Asn375. RMSD values exhibited good inhibitory profiles in the order quercetin (0.73 Å) < 7 g < baicalein < 7a < 7n < 7 h (1.81 Å) and the binding free energies followed similar pattern. Density functional theory (DFT) data established good correlation between the active compounds and significant activity was associated with more stabilized LUMO (lowest unoccupied molecular orbitals) orbitals. Nevertheless, the present studies declare active analogues like 7c, 7 l, 7a, 7j as leads. Work is ongoing in derivatizing active molecules to explore more effective leads as 15-LOX inhibitors as antiinflammatory agents.
Assuntos
Inibidores de Lipoxigenase , Quercetina , Triazóis , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Teoria da Densidade Funcional , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/química , Compostos de Sulfidrila , Estrutura MolecularRESUMO
Primary resistance to tyrosine kinase inhibitors (TKIs) is a significant barrier to optimal outcomes in chronic myeloid leukemia (CML), but factors contributing to response heterogeneity remain unclear. Using single-cell RNA (scRNA) sequencing, we identified 8 statistically significant features in pretreatment bone marrow, which correlated with either sensitivity (major molecular response or MMR) or extreme resistance to imatinib (eventual blast crisis [BC] transformation). Employing machine-learning, we identified leukemic stem cell (LSC) and natural killer (NK) cell gene expression profiles predicting imatinib response with >80% accuracy, including no false positives for predicting BC. A canonical erythroid-specifying (TAL1/KLF1/GATA1) regulon was a hallmark of LSCs from patients with MMR and was associated with erythroid progenitor [ERP] expansion in vivo (P < .05), and a 2- to 10-fold (6.3-fold in group A vs 1.09-fold in group C) erythroid over myeloid bias in vitro. Notably, ERPs demonstrated exquisite TKI sensitivity compared with myeloid progenitors (P < .001). These LSC features were lost with progressive resistance, and MYC- and IRF1-driven inflammatory regulons were evident in patients who progressed to transformation. Patients with MMR also exhibited a 56-fold expansion (P < .01) of a normally rare subset of hyperfunctional adaptive-like NK cells, which diminished with progressive resistance, whereas patients destined for BC accumulated inhibitory NKG2A+ NK cells favoring NK cell tolerance. Finally, we developed antibody panels to validate our scRNA-seq findings. These panels may be useful for prospective studies of primary resistance, and in assessing the contribution of predetermined vs acquired factors in TKI response heterogeneity.
Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Inibidores de Proteínas Quinases , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Estudos Prospectivos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Crise Blástica , Resistencia a Medicamentos Antineoplásicos/genéticaRESUMO
A low temperature hydrogen borrowing approach to generate secondary amines using benzimidazole-based N-heterocyclic carbene (BNHC) ruthenium complexes is reported. A series of the piano-stool complexes of the type [(η6-p-cymene)(BNHC)RuCl2] (1a-g) were synthesized via one-pot reaction of the NHC salt precursor, Ag2O, and [RuCl2(p-cymene)]2 and characterized using conventional spectroscopic techniques. The geometry of two precursors, [(η6-p-cymene)(Me4BnMe2BNHCCH2OxMe)RuCl2] (1f) and [(η6-p-cymene)(Me5BnMe2BNHCCH2OxMe)RuCl2] (1g), was studied by single crystal X-ray diffraction. These catalysts were found to dehydrogenate alcohols efficiently at temperatures as low as 50 °C to allow Schiff-base condensation and subsequent imine hydrogenation to afford secondary amines. Notably, this ruthenium-based procedure enables the N-alkylation of aromatic and heteroaromatic primary amines with a wide range of primary alcohols in excellent yields of up to 98%. The present methodology is green and water is liberated as the sole byproduct.
RESUMO
The consensus molecular subtype (CMS) classification of colorectal cancer is based on bulk transcriptomics. The underlying epithelial cell diversity remains unclear. We analyzed 373,058 single-cell transcriptomes from 63 patients, focusing on 49,155 epithelial cells. We identified a pervasive genetic and transcriptomic dichotomy of malignant cells, based on distinct gene expression, DNA copy number and gene regulatory network. We recapitulated these subtypes in bulk transcriptomes from 3,614 patients. The two intrinsic subtypes, iCMS2 and iCMS3, refine CMS. iCMS3 comprises microsatellite unstable (MSI-H) cancers and one-third of microsatellite-stable (MSS) tumors. iCMS3 MSS cancers are transcriptomically more similar to MSI-H cancers than to other MSS cancers. CMS4 cancers had either iCMS2 or iCMS3 epithelium; the latter had the worst prognosis. We defined the intrinsic epithelial axis of colorectal cancer and propose a refined 'IMF' classification with five subtypes, combining intrinsic epithelial subtype (I), microsatellite instability status (M) and fibrosis (F).
Assuntos
Neoplasias Colorretais , Neoplasias Epiteliais e Glandulares , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células Epiteliais/patologia , Humanos , Instabilidade de Microssatélites , Repetições de Microssatélites/genética , Neoplasias Epiteliais e Glandulares/genética , Transcriptoma/genéticaRESUMO
The transcriptomic diversity of cell types in the human body can be analysed in unprecedented detail using single cell (SC) technologies. Unsupervised clustering of SC transcriptomes, which is the default technique for defining cell types, is prone to group cells by technical, rather than biological, variation. Compared to de-novo (unsupervised) clustering, we demonstrate using multiple benchmarks that supervised clustering, which uses reference transcriptomes as a guide, is robust to batch effects and data quality artifacts. Here, we present RCA2, the first algorithm to combine reference projection (batch effect robustness) with graph-based clustering (scalability). In addition, RCA2 provides a user-friendly framework incorporating multiple commonly used downstream analysis modules. RCA2 also provides new reference panels for human and mouse and supports generation of custom panels. Furthermore, RCA2 facilitates cell type-specific QC, which is essential for accurate clustering of data from heterogeneous tissues. We demonstrate the advantages of RCA2 on SC data from human bone marrow, healthy PBMCs and PBMCs from COVID-19 patients. Scalable supervised clustering methods such as RCA2 will facilitate unified analysis of cohort-scale SC datasets.
Assuntos
Algoritmos , Análise por Conglomerados , RNA Citoplasmático Pequeno/genética , RNA-Seq/métodos , Análise de Célula Única/métodos , Animais , Artrite Reumatoide/genética , Células da Medula Óssea/metabolismo , COVID-19/sangue , COVID-19/patologia , Estudos de Coortes , Conjuntos de Dados como Assunto , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Camundongos , Especificidade de Órgãos , Controle de Qualidade , RNA-Seq/normas , Análise de Célula Única/normas , TranscriptomaRESUMO
The United Nation is achieving its sustainable development objectives by focusing on the greener technologies for waste to energy (WTE) conversion. This necessitates the exploration of every conceivable sustainable route in different sectors. Among these, sustainable bio-economy, electricity, and waste management are the most dynamic areas. However, till now sustainability judgments for the generation of electricity from waste-to-energy supply chain (WTE-SC) technologies have been restricted in scale with respect to the three-dimensional sustainability structure (social, environmental, and economic). In most of the cases, the assessments were controlled by various environmental factors/indicators, via overlooking the economic and social indicators. In this review, we have tried to summarize a variety of state-of-the-art WTE technologies including biological and thermal treatment, landfill gas utilization and biorefineries technologies etc. These technologies can be implemented by various policy makers and agencies to deal with the communities fear before spreading and executing the relevant rules and regulations. The implementation of these rules and regulations for WTE-SC were scheduled to decide the barriers and challenges from the perspective of finance, institution, technology, and regulation.
Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Eletricidade , Resíduos Sólidos , Instalações de Eliminação de ResíduosRESUMO
Equine ownership is a common income-generating strategy in Pakistan. In Karachi, donkey carts are used to transport building materials, commercial produce and garbage. This study aimed to articulate the role and welfare of donkeys used in waste management. We conducted interviews with donkey owners (n = 200), households which use donkey carts for waste collection (n = 50) and key informants (n = 14). To assess the welfare of donkeys, the Standardised Equine-Based Welfare Assessment Tool (SEBWAT) was used (n = 204). Collection of waste was the primary source of income for 89% of owners interviewed. Of those directly involved in waste collection, 62% were found to be under 18 years of age. During interviews with donkey cart customers the majority reported that there would be a huge garbage build-up if donkey carts were not available. Welfare assessments demonstrated that 52.9% of donkeys had a body condition score of two. Muzzle mutilation was extremely high (78.4%) and 66.7% of donkeys had superficial knee lesions. This is the first study that has explored the role of donkey carts in waste management in Pakistan. The data demonstrate the sizable role that donkey-owning communities play in waste management and the important livelihood option this offers, as well as considerable animal welfare concerns.
RESUMO
Glioblastoma (GBM) is the most frequent and most malignant primary brain tumour in adults. GBMs have a unique landscape of somatic copy number alterations (SCNAs), with the concomitant appearance of numerous driver amplifications and deletions. Here, we examined the genomic regions harbouring SCNAs and their impact on the GBM miRNome. We found that 40% of SCNA events covering 70-88% of the genomically altered regions, as identified by GISTIC and RAE algorithms, carried miRNA genes. Of 1426 annotated mature miRNAs analysed, ~ 14% (n = 198) were mapped to such fragile loci. Further, we identified an intragenic miRNA, miR-4484 located on chromosome-10, as a deleted and downregulated miRNA in GBM. miR-4484 exhibited a strong positive correlation with the expression of its host gene uroporphyrinogen III synthase (UROS), thereby indicating that the loss of miR-4484 is a codeletion event in GBM. Overexpression of miR-4484 reduced the colony-forming ability and suppressed the migratory capacity of glioma cells. Analysis of the RNA-seq-derived transcriptome upon exogenous miR-4484 overexpression in conjunction with an integrative bioinformatics approach revealed several putative targets of miR-4484. Unbiased functional enrichment of these targets through DAVID identified a cohort of important gene ontology terms, which possibly explain the functional role of miR-4484 in gliomagenesis. Selected targets were validated and, importantly, were found to be upregulated in GBM. In brief, our study identified a panel of miRNAs that are likely to be regulated by genomic deletions and amplifications. Further, miR-4484 was found to be deleted and acts as a tumour suppressor miRNA in GBM.
Assuntos
Neoplasias Encefálicas/genética , Deleção de Genes , Genes Supressores de Tumor , Glioblastoma/metabolismo , MicroRNAs/genética , RNA Neoplásico/genética , Adulto , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Feminino , Dosagem de Genes , Glioblastoma/genética , Humanos , Masculino , MicroRNAs/metabolismoRESUMO
BACKGROUND: Glioblastomas (GBM) continue to remain one of the most dreaded tumours that are highly infiltrative in nature and easily preclude comprehensive surgical resection. GBMs pose an intricate etiology as they are being associated with a plethora of genetic and epigenetic lesions. Misregulation of the PI3 kinase pathway is one of the most familiar events in GBM. While the PI3 kinase signalling regulated pathways and genes have been comprehensively studied, its impact on the miRNome is yet to be explored. The objective of this study was to elucidate the PI3 kinase pathway regulated miRNAs in GBM. METHODS: miRNA expression profiling was conducted to monitor the differentially regulated miRNAs upon PI3 kinase pathway abrogation. qRT-PCR was used to measure the abundance of miR-326 and its host gene encoded transcript. Proliferation assay, colony suppression assay and wound healing assay were carried out in pre-miR transfected cells to investigate its role in malignant transformation. Potential targets of miR-326 were identified by transcriptome analysis of miR-326 overexpressing cells by whole RNA sequencing and selected targets were validated. Several publically available data sets were used for various investigations described above. RESULTS: We identified several miRNA that were regulated by PI3 kinase pathway. miR-326, a GBM downregulated miRNA, was validated as one of the miRNAs whose expression was alleviated upon abrogation of the PI3 kinase pathway. Overexpression of miR-326 resulted in reduced proliferation, colony suppression and hindered the migration capacity of glioma cells. Arrestin, Beta 1 (ARRB1), the host gene of miR-326, was also downregulated in GBM and interestingly, the expression of ARRB1 was also alleviated upon inhibition of the PI3 kinase pathway, indicating similar regulation pattern. More importantly, miR-326 exhibited a significant positive correlation with ARRB1 in terms of its expression. Transcriptome analysis upon miR-326 overexpression coupled with integrative bioinformatics approach identified several putative targets of miR-326. Selected targets were validated and interestingly found to be upregulated in GBM. CONCLUSIONS: Taken together, our study uncovered the PI3 kinase regulated miRNome in GBM. miR-326, a PI3 kinase pathway inhibited miRNA, was demonstrated as a tumour suppressor miRNA in GBM.
Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais , Transcriptoma , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Genes Supressores de Tumor , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Interferência de RNA , beta-Arrestina 1/genéticaRESUMO
Glioblastomas (GBM) are the most malignant form of astrocytomas which are difficult to treat and portend a grave clinical course and poor prognosis. In this study, we identified Chromobox homolog 7 (Cbx7), a member of Polycomb Repressive Complex 1 (PRC1), as a downregulated gene in GBM owing to its promoter hypermethylation. Bisulphite sequencing and methylation inhibitor treatment established the hypermethylation of Cbx7 in GBM. Exogenous overexpression of Cbx7 induced cell death, inhibited cell proliferation, colony formation and migration/invasion of the glioma cells. GSEA of Cbx7 regulated genes identified Cbx7 as a repressor of transcription co-activators YAP/TAZ, the inhibitory targets of the Hippo signalling pathway. In good correlation, the exogenous expression of Cbx7 repressed the YAP/TAZ-dependent transcription and downregulated CTGF, a bonafide YAP/TAZ target. We also observed reduced levels of phospho-JNK in Cbx7 expressing cells. Additionally, CTGF silencing and pharmacological inhibition of JNK also inhibited glioma cell migration. Further, Cbx7 failed to inhibit cell migration significantly in the presence of exogenously overexpressed CTGF or constitutively active JNK. Thus, our study identifies Cbx7 as an inhibitor of glioma cell migration through its inhibitory effect on YAP/TAZ-CTGF-JNK signalling axis and underscores the importance of epigenetic inactivation of Cbx7 in gliomagenesis.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Encefálicas/genética , Metilação de DNA , Regulação para Baixo , Glioblastoma/genética , Fosfoproteínas/genética , Complexo Repressor Polycomb 1/genética , Fatores de Transcrição/genética , Aciltransferases , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo , Humanos , Proteínas Serina-Treonina Quinases/genética , Análise de Sequência de DNA , Transdução de Sinais , Transcrição Gênica , Proteínas de Sinalização YAPRESUMO
Glioblastoma is the most common and malignant form of primary astrocytoma. Upon investigation of the insulin-like growth factor (IGF) pathway, we found the IGF2BP3/IMP3 transcript and protein to be up-regulated in GBMs but not in lower grade astrocytomas (p < 0.0001). IMP3 is an RNA binding protein known to bind to the 5'-untranslated region of IGF-2 mRNA, thereby activating its translation. Overexpression- and knockdown-based studies establish a role for IMP3 in promoting proliferation, anchorage-independent growth, invasion, and chemoresistance. IMP3 overexpressing B16F10 cells also showed increased tumor growth, angiogenesis, and metastasis, resulting in poor survival in a mouse model. Additionally, the infiltrating front, perivascular, and subpial regions in a majority of the GBMs stained positive for IMP3. Furthermore, two different murine glioma models were used to substantiate the above findings. In agreement with the translation activation functions of IMP3, we also found increased IGF-2 protein in the GBM tumor samples without a corresponding increase in its transcript levels. Also, in vitro IMP3 overexpression/knockdown modulated the IGF-2 protein levels without altering its transcript levels. Additionally, IGF-2 neutralization and supplementation studies established that the proproliferative effects of IMP3 were indeed mediated through IGF-2. Concordantly, PI3K and MAPK, the downstream effectors of IGF-2, are activated by IMP3 and are found to be essential for IMP3-induced cell proliferation. Thus, we have identified IMP3 as a GBM-specific proproliferative and proinvasive marker acting through IGF-2 resulting in the activation of oncogenic PI3K and MAPK pathways.