Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15764, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737457

RESUMO

We present a generically applicable approach to determine an extensive set of size-dependent critical quality attributes inside nanoparticulate pharmaceutical products. By coupling asymmetrical-flow field-flow fractionation (AF4) measurements directly in-line with solution small angle X-ray scattering (SAXS), vital information such as (i) quantitative, absolute size distribution profiles, (ii) drug loading, (iii) size-dependent internal structures, and (iv) quantitative information on free drug is obtained. Here the validity of the method was demonstrated by characterizing complex mRNA-based lipid nanoparticle products. The approach is particularly applicable to particles in the size range of 100 nm and below, which is highly relevant for pharmaceutical products-both biologics and nanoparticles. The method can be applied as well in other fields, including structural biology and environmental sciences.


Assuntos
Nanopartículas , Espalhamento a Baixo Ângulo , Difração de Raios X , Raios X , RNA Mensageiro/genética
2.
Pharmaceutics ; 15(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37631282

RESUMO

Lipid nanoparticles (LNPs) have gained great attention as carriers for mRNA-based therapeutics, finding applications in various indications, extending beyond their recent use in vaccines for infectious diseases. However, many aspects of LNP structure and their effects on efficacy are not well characterized. To further exploit the potential of mRNA therapeutics, better control of the relationship between LNP formulation composition with internal structure and transfection efficiency in vitro is necessary. We compared two well-established ionizable lipids, namely DODMA and MC3, in combination with two helper lipids, DOPE and DOPC, and two polymer-grafted lipids, either with polysarcosine (pSar) or polyethylene glycol (PEG). In addition to standard physicochemical characterization (size, zeta potential, RNA accessibility), small-angle X-ray scattering (SAXS) was used to analyze the structure of the LNPs. To assess biological activity, we performed transfection and cell-binding assays in human peripheral blood mononuclear cells (hPBMCs) using Thy1.1 reporter mRNA and Cy5-labeled mRNA, respectively. With the SAXS measurements, we were able to clearly reveal the effects of substituting the ionizable and helper lipid on the internal structure of the LNPs. In contrast, pSar as stealth moieties affected the LNPs in a different manner, by changing the surface morphology towards higher roughness. pSar LNPs were generally more active, where the highest transfection efficiency was achieved with the LNP formulation composition of MC3/DOPE/pSar. Our study highlights the utility of pSar for improved mRNA LNP products and the importance of pSar as a novel stealth moiety enhancing efficiency in future LNP formulation development. SAXS can provide valuable information for the rational development of such novel formulations by elucidating structural features in different LNP compositions.

3.
Cells ; 9(9)2020 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899484

RESUMO

Hybrid nanoparticles from lipidic and polymeric components were assembled to serve as vehicles for the transfection of messenger RNA (mRNA) using different portions of the cationic lipid DOTAP (1,2-Dioleoyl-3-trimethylammonium-propane) and the cationic biopolymer protamine as model systems. Two different sequential assembly approaches in comparison with a direct single-step protocol were applied, and molecular organization in correlation with biological activity of the resulting nanoparticle systems was investigated. Differences in the structure of the nanoparticles were revealed by thorough physicochemical characterization including small angle neutron scattering (SANS), small angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). All hybrid systems, combining lipid and polymer, displayed significantly increased transfection in comparison to lipid/mRNA and polymer/mRNA particles alone. For the hybrid nanoparticles, characteristic differences regarding the internal organization, release characteristics, and activity were determined depending on the assembly route. The systems with the highest transfection efficacy were characterized by a heterogenous internal organization, accompanied by facilitated release. Such a system could be best obtained by the single step protocol, starting with a lipid and polymer mixture for nanoparticle formation.


Assuntos
Biopolímeros/química , Lipídeos/química , Nanopartículas/química , RNA Mensageiro/metabolismo , Transfecção/métodos , Animais , Linhagem Celular , Ácidos Graxos Monoinsaturados/química , Feminino , Heparina/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Imagem Óptica , Tamanho da Partícula , Compostos de Amônio Quaternário/química , RNA Mensageiro/química
4.
J Pharm Sci ; 105(8): 2402-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27422086

RESUMO

A modified in vitro disintegration test device was designed that enables the investigation of the influence of hydrodynamic conditions on disintegration of solid oral dosage forms. The device represents an improved derivative of the compendial PhEur/USP disintegration test device. By the application of a computerized numerical control, a variety of physiologically relevant moving velocities and profiles can be applied. With the help of computational fluid dynamics, the hydrodynamic and mechanical forces present in the probe chamber were characterized for a variety of device moving speeds. Furthermore, a proof of concept study aimed at the investigation of the influence of hydrodynamic conditions on disintegration times of immediate release tablets. The experiments demonstrated the relevance of hydrodynamics for tablet disintegration, especially in media simulating the fasted state. Disintegration times increased with decreasing moving velocity. A correlation between experimentally determined disintegration times and computational fluid dynamics predicted shear stress on tablet surface was established. In conclusion, the modified disintegration test device is a valuable tool for biorelevant in vitro disintegration testing of solid oral dosage forms.


Assuntos
Modelos Teóricos , Comprimidos/química , Tecnologia Farmacêutica/instrumentação , Administração Oral , Líquidos Corporais/química , Simulação por Computador , Hidrodinâmica , Resistência ao Cisalhamento , Software , Tecnologia Farmacêutica/métodos , Fatores de Tempo
5.
J Pharm Sci ; 104(7): 2213-24, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25964103

RESUMO

A set of biorelevant media "fasted-state simulated intestinal fluid with cholesterol (FaSSIF-C)" for the in vitro study of intestinal drug dissolution in the duodenum was developed. These contain cholesterol at the same levels as in human bile: the cholesterol content of FaSSIF-7C is equivalent to healthy female, FaSSIF-10C to healthy male persons, and FaSSIF-13C to several disease cases that lead to gallstones. The fluids were studied in three aspects: biocompatibility, intestinal nanostructure, and solubilizing power of hydrophobic drugs of the BCS class II. The biocompatibility study showed no toxic effects in a Caco-2 cell system. The drug-solubilizing capacity toward Fenofibrate, Danazol, Griseofulvin, and Carbamazepine was assessed as example. It varied with the cholesterol content widely from a fourfold improvement to a twofold reduction. The nanostructure study by dynamic light scattering and small-angle neutron scattering indicated vesicles as the main component of FaSSIF-C in equilibrium (>1 h), but at high cholesterol content, larger particles were observed as a minor contribution. The neutron experiments indicated the presence of complex micelle-vesicle mixtures, even after 1 h development of fed-state bile model to FaSSIF. The results indicate that cholesterol affects some drugs in solubilization and particle size in intestinal model fluids.


Assuntos
Líquidos Corporais/metabolismo , Colesterol/metabolismo , Jejum/metabolismo , Mucosa Intestinal/metabolismo , Células CACO-2 , Carbamazepina/metabolismo , Danazol/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Feminino , Fenofibrato/metabolismo , Griseofulvina/metabolismo , Humanos , Absorção Intestinal/fisiologia , Masculino , Modelos Teóricos , Tamanho da Partícula , Solubilidade
6.
Radiat Oncol ; 10: 52, 2015 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-25889824

RESUMO

BACKGROUND: Neutron capture therapy for glioblastoma has focused mainly on the use of (10)B as neutron capture isotope. However, (157)Gd offers several advantages over boron, such as higher cross section for thermal neutrons and the possibility to perform magnetic resonance imaging during neutron irradiation, thereby combining therapy and diagnostics. We have developed different liposomal formulations of gadolinium-DTPA (Magnevist®) for application in neutron capture therapy of glioblastoma. The formulations were characterized physicochemically and tested in vitro in a glioma cell model for their effectiveness. METHODS: Liposomes entrapping gadolinium-DTPA as neutron capture agent were manufactured via lipid/film-extrusion method and characterized with regard to size, entrapment efficiency and in vitro release. For neutron irradiation, F98 and LN229 glioma cells were incubated with the newly developed liposomes and subsequently irradiated at the thermal column of the TRIGA reactor in Mainz. The dose rate derived from neutron irradiation with (157)Gd as neutron capturing agent was calculated via Monte Carlo simulations and set in relation to the respective cell survival. RESULTS: The liposomal Gd-DTPA reduced cell survival of F98 and LN229 cells significantly. Differences in liposomal composition of the formulations led to distinctly different outcome in cell survival. The amount of cellular Gd was not at all times proportional to cell survival, indicating that intracellular deposition of formulated Gd has a major influence on cell survival. The majority of the dose contribution arises from photon cross irradiation compared to a very small Gd-related dose. CONCLUSIONS: Liposomal gadolinium formulations represent a promising approach for neutron capture therapy of glioblastoma cells. The liposome composition determines the uptake and the survival of cells following radiation, presumably due to different uptake pathways of liposomes and intracellular deposition of gadolinium-DTPA. Due to the small range of the Auger and conversion electrons produced in (157)Gd capture, the proximity of Gd-atoms to cellular DNA is a crucial factor for infliction of lethal damage. Furthermore, Gd-containing liposomes may be used as MRI contrast agents for diagnostic purposes and surveillance of tumor targeting, thus enabling a theranostic approach for tumor therapy.


Assuntos
Neoplasias Encefálicas/radioterapia , Proliferação de Células/efeitos da radiação , Glioma/radioterapia , Lipossomos , Terapia por Captura de Nêutron , Nêutrons , Neoplasias Encefálicas/patologia , Meios de Contraste/farmacocinética , Gadolínio DTPA/farmacocinética , Glioma/patologia , Humanos , Técnicas In Vitro , Imageamento por Ressonância Magnética/métodos , Método de Monte Carlo , Células Tumorais Cultivadas
7.
Mol Pharm ; 9(6): 1628-37, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22587679

RESUMO

The absorption of commonly used ferrous iron salts from intestinal segments at neutral to slightly alkaline pH is low, mainly because soluble ferrous iron is easily oxidized to poorly soluble ferric iron and because ferrous iron, but not ferric iron, is carried by the divalent metal transporter DMT-1. Moreover, ferrous iron frequently causes gastrointestinal side effects. Iron hydroxide nanoparticles with neutral and hydrophilic carbohydrate shells are alternatively used to ferrous salts. In these formulations gastrointestinal side effects are rare because hundreds of ferric iron atoms are safely packed in nanoscaled cores surrounded by the solubilizing shell; nevertheless, iron bioavailability is even worse compared to ferrous salts. In this study the cell uptake of iron hydroxide and iron oxide nanoparticles (FeONP) with negatively charged shells of different chemical types and sizes was compared to the uptake of those with neutral hydrophilic shells, ferrous sulfate and ferric chloride. The nanoparticle uptake was measured in Caco-2 cells with the iron detecting ferrozine method and visualized by transmission electron microscopy. The toxicity was evaluated using the MTT assay. For nanoparticles with a negatively charged shell the iron uptake was about 40 times higher compared to those with neutral hydrophilic carbohydrate shell or ferric chloride and in the same range as ferrous sulfate. However, in contrast to ferrous sulfate, nanoparticles with negatively charged shells showed no toxicity. Two different uptake mechanisms were proposed: diffusion for hydroxide nanoparticles with neutral hydrophilic shell and adsorptive endocytosis for nanoparticles with negatively charged shells. It needs to be determined whether iron hydroxide nanoparticles with negatively charged shells also show improved bioavailability in iron-deficient patients compared to iron hydroxide nanoparticles with a neutral hydrophilic shell, which exist in the market today.


Assuntos
Compostos Férricos/química , Nanopartículas/química , Células CACO-2 , Cloretos/química , Humanos , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura
8.
Radiat Oncol ; 7: 1, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22214341

RESUMO

For studying proliferation and determination of survival of cancer cells after irradiation, the multiple MTT assay, based on the reduction of a yellow water soluble tetrazolium salt to a purple water insoluble formazan dye by living cells was modified from a single-point towards a proliferation assay. This assay can be performed with a large number of samples in short time using multi-well-plates, assays can be performed semi-automatically with a microplate reader. Survival, the calculated parameter in this assay, is determined mathematically. Exponential growth in both control and irradiated groups was proven as the underlying basis of the applicability of the multiple MTT assay. The equivalence to a clonogenic survival assay with its disadvantages such as time consumption was proven in two setups including plating of cells before and after irradiation. Three cell lines (A 549, LN 229 and F 98) were included in the experiment to study its principal and general applicability.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos da radiação , Glioblastoma/patologia , Neoplasias Pulmonares/patologia , Ensaio Tumoral de Célula-Tronco , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Sobrevivência Celular/efeitos da radiação , Raios gama , Glioblastoma/tratamento farmacológico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Células Tumorais Cultivadas
9.
J Pharm Pharmacol ; 63(12): 1522-30, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22060282

RESUMO

OBJECTIVES: The absorption of commonly used ferrous iron salts from intestinal segments at neutral to slightly alkaline pH is low, mainly because soluble ferrous iron is easily oxidized to poorly soluble ferric iron and ferrous iron but not ferric iron is carried by the divalent metal transporter DMT-1. Moreover, ferrous iron frequently causes gastrointestinal side effects. In iron(III)-hydroxide nanoparticles hundreds of ferric iron atoms are safely packed in nanoscaled cores surrounded by a solubilising carbohydrate shell, yet bioavailability from such particles is insufficient when compared with ferrous salts. To increase their intestinal uptake iron(III)-hydroxide nanoparticles were coupled in this study with the protoporphyrin hemin, which undergoes carrier-mediated uptake in the intestine. METHODS: Uptake of iron(III)-hydroxide nanoparticles with hemin covalently coupled by DCC reaction was measured in Caco-2 cells with a colorimetric assay and visualized by transmission electron microscopy. KEY FINDINGS: Nanoparticles were taken up by carrier-mediated transport, since uptake was temperature-dependent and increased with an increasing hemin substitution grade. Furthermore, uptake decreased with an increasing concentration of free hemin, due to competition for carrier-mediated uptake. CONCLUSIONS: Hemin-coupled iron(III)-hydroxide nanoparticles were carried by a heme specific transport system, probably via receptor mediated endocytosis. It can be expected that this system shows improved absorption of iron compared with uncoupled iron(III)-hydroxide nanoparticles, which exist on the market today.


Assuntos
Compostos Férricos/metabolismo , Hemina/metabolismo , Nanopartículas , Células CACO-2 , Colorimetria , Corantes , Meios de Cultura , Compostos Férricos/química , Ferrozina , Hemina/química , Humanos , Quelantes de Ferro , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espalhamento de Radiação , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Sais de Tetrazólio , Tiazóis
10.
Mol Pharm ; 8(6): 2162-72, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-21988605

RESUMO

The flow of bile secretion into the human digestive system was simulated by the dilution of a bile salt-lipid micellar solution. The structural development upon the dilution of the fed state bile model FeSSIF(mod6.5) to the fasted state bile model FaSSIF(mod) was investigated by small-angle neutron scattering (SANS) and dynamic light scattering (DLS) in crossed beam experiments to observe small and large structures in a size range of 1 nm to 50 µm in parallel. Because of the physiologically low lipid and surfactant concentrations of 2.625 mM egg-phosphatidylcholine and 10.5 mM taurocholate the sensitivity of the neutron-structural investigations was improved by partial solvent deuteration with 71% D(2)O, with control experiments in H(2)O. Static experiments of initial and end state systems after 6 days of development revealed the presence of mixed bile salt-lipid micelles of 5.1 nm size in the initial state model FeSSIF(mod6.5), and large liposomes in FaSSIF(mod), which represent the late status after dilution of bile secretion in the intestine in the fasted state. The liposomes depicted a size of 34.39 nm with a membrane thickness of 4.75 nm, which indicates medium to large size unilamellar vesicles. Crossed beam experiments with time-resolved neutron and light scattering experiments after fast mixing with a stopped-flow device revealed a stepwise structural dynamics upon dilution by a factor of 3.5. The liposome formation was almost complete five minutes after bile dilution. The liposomes 30 min after dilution resembled the liposomes found after 6 days and depicted a size of 44.56 nm. In the time regime between 3 and 100 s a kinetic intermediate was observed. In a further experiment the liposome formation was abolished when the dilution was conducted with a surfactant solution containing sodium dodecyl sulfate.


Assuntos
Ácidos e Sais Biliares/química , Sistemas de Liberação de Medicamentos , Lipossomos/química , Micelas , Tensoativos/química , Ácido Gástrico/química , Humanos , Luz , Modelos Teóricos , Tamanho da Partícula , Espalhamento de Radiação
11.
ACS Nano ; 5(9): 7155-67, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21866933

RESUMO

In biological fluids, proteins associate with nanoparticles, leading to a protein "corona" defining the biological identity of the particle. However, a comprehensive knowledge of particle-guided protein fingerprints and their dependence on nanomaterial properties is incomplete. We studied the long-lived ("hard") blood plasma derived corona on monodispersed amorphous silica nanoparticles differing in size (20, 30, and 100 nm). Employing label-free liquid chromatography mass spectrometry, one- and two-dimensional gel electrophoresis, and immunoblotting the composition of the protein corona was analyzed not only qualitatively but also quantitatively. Detected proteins were bioinformatically classified according to their physicochemical and biological properties. Binding of the 125 identified proteins did not simply reflect their relative abundance in the plasma but revealed an enrichment of specific lipoproteins as well as proteins involved in coagulation and the complement pathway. In contrast, immunoglobulins and acute phase response proteins displayed a lower affinity for the particles. Protein decoration of the negatively charged particles did not correlate with protein size or charge, demonstrating that electrostatic effects alone are not the major driving force regulating the nanoparticle-protein interaction. Remarkably, even differences in particle size of only 10 nm significantly determined the nanoparticle corona, although no clear correlation with particle surface volume, protein size, or charge was evident. Particle size quantitatively influenced the particle's decoration with 37% of all identified proteins, including (patho)biologically relevant candidates. We demonstrate the complexity of the plasma corona and its still unresolved physicochemical regulation, which need to be considered in nanobioscience in the future.


Assuntos
Nanopartículas , Plasma , Proteômica , Humanos , Espectrometria de Massas , Tamanho da Partícula
12.
Eur J Pharm Biopharm ; 78(3): 480-91, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21439379

RESUMO

The treatment of iron deficiency anemia with polynuclear iron formulations is an established therapy in patients with chronic kidney disease but also in other disease areas like gastroenterology, cardiology, oncology, pre/post operatively and obstetrics' and gynecology. Parenteral iron formulations represent colloidal systems in the lower nanometer size range which have traditionally been shown to consist of an iron core surrounded by a carbohydrate shell. In this publication, we for the first time describe the novel matrix structure of iron isomaltoside 1000 which differs from the traditional picture of an iron core surrounded by a carbohydrate. Despite some structural similarities between the different iron formulations, the products differ significantly in their physicochemical properties such as particle size, zeta potential, free and labile iron content, and release of iron in serum. This study compares the physiochemical properties of iron isomaltoside 1000 (Monofer) with the currently available intravenous iron preparations and relates them to their biopharmaceutical properties and their approved clinical applications. The investigated products encompass low molecular weight iron dextran (CosmoFer), sodium ferric gluconate (Ferrlecit), iron sucrose (Venofer), iron carboxymaltose (Ferinject/Injectafer), and ferumoxytol (Feraheme) which are compared to iron isomaltoside 1000 (Monofer). It is shown that significant and clinically relevant differences exist between sodium ferric gluconate and iron sucrose as labile iron formulations and iron dextran, iron carboxymaltose, ferumoxytol, and iron isomaltoside 1000 as stable polynuclear formulations. The differences exist in terms of their immunogenic potential, safety, and convenience of use, the latter being expressed by the opportunity for high single-dose administration and short infusion times. Monofer is a new parenteral iron product with a very low immunogenic potential and a very low content of labile and free iron. This enables Monofer, as the only IV iron formulation, to be administered as a rapid high dose infusion in doses exceeding 1000 mg without the application of a test dose. This offers considerable dose flexibility, including the possibility of providing full iron repletion in a single infusion (one-dose iron repletion).


Assuntos
Dissacarídeos/química , Sistemas de Liberação de Medicamentos , Compostos Férricos/química , Vitaminas/química , Fenômenos Químicos , Dissacarídeos/administração & dosagem , Dissacarídeos/farmacologia , Dissacarídeos/uso terapêutico , Composição de Medicamentos , Compostos Férricos/administração & dosagem , Compostos Férricos/farmacologia , Compostos Férricos/uso terapêutico , Humanos , Hidrólise , Infusões Intravenosas , Estrutura Molecular , Peso Molecular , Tamanho da Partícula , Vitaminas/administração & dosagem , Vitaminas/farmacologia , Vitaminas/uso terapêutico
13.
Biomacromolecules ; 11(3): 568-74, 2010 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-20121134

RESUMO

We describe the synthesis of linear-hyperbranched lipids for liposome preparation based on linear poly(ethylene glycol) (PEG) and hyperbranched polyglycerol (PG). Molecular weights were adjusted to values around 3000 g/mol with varying degrees of polymerization of the linear and the branched segments in analogy to PEG-based stealth lipids; polydispersities were generally low and below 1.3. The hydrophobic anchors were introduced into the lipid structures as initiators for the anionic polymerization of ethylene oxide and are either based on cholesterol or on different aliphatic glyceryl ethers. Complete incorporation of the apolar initiators was evidenced by MALDI-ToF analysis at all stages of the reaction. The linear-hyperbranched polyether lipid is incorporated as the polyfunctional shell in liposome formulations together with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The resulting liposomes were subsequently characterized via dynamic light scattering (DLS) and small angle neutron scattering (SANS) as well as transmission electron microscopy (TEM), demonstrating the formation of unilamellar liposomes in the size range of 40 to 50 nm.


Assuntos
Glicerol/química , Lipídeos/química , Lipossomos , Polímeros/química , Ânions , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Macromol Biosci ; 8(11): 1034-43, 2008 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-18683168

RESUMO

We report the vectorial incorporation of a highly asymmetric F0F1 ATP synthase complex from Micrococcus luteus into polymer-supported membranes. Dynamic light scattering and cryo electron microscopy confirm that the use of weak surfactants (bile acid) allows for the non-disruptive protein incorporation into lipid vesicles. Spreading of vesicles with ATP synthase onto a cellulose support results in a homogeneous distribution of proteins, in contrast to a patchy image observed on bare glass slides. The orientation of ATP synthase can be identified using an antibody to the ATP binding site as well as from topographic profiles of the surface. The method to "align" transmembrane proteins in supported membranes would open a possibility to quantify protein functions in biomimetic model systems.


Assuntos
Membranas Artificiais , ATPases Translocadoras de Prótons/química , Lipossomos , Micrococcus luteus/enzimologia , Modelos Biológicos , Tensoativos
15.
Eur Biophys J ; 35(5): 446-50, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16447039

RESUMO

Magnetic drug targeting employing nanoparticles as carriers is a promising cancer treatment avoiding side effects of conventional chemotherapy. We used iron oxide nanoparticles covered by starch derivatives with phosphate groups which bound mitoxantrone as chemotherapeutikum. In this letter we show that a strong magnetic field gradient at the tumour location accumulates the nanoparticles. Electron microscope investigations show that the ferrofluids can be enriched in tumour tissue and tumour cells.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Portadores de Fármacos/química , Magnetismo/uso terapêutico , Mitoxantrona/administração & dosagem , Mitoxantrona/química , Nanopartículas/química , Animais , Antineoplásicos/administração & dosagem , Materiais Revestidos Biocompatíveis/administração & dosagem , Materiais Revestidos Biocompatíveis/química , Sistemas de Liberação de Medicamentos/métodos , Coelhos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA