Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(37): 88167-88179, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37436625

RESUMO

The environment and public health are currently being threatened by the water pollution caused by dyes. Finding eco-friendly and economically viable photocatalysts has been a hot issue in recent years, as photocatalytic dye degradation is essential for eliminating dye from contaminated water as compared to other methods because of the cost factor and efficiency in removing organic contaminants. Using un-doped ZnSe for degrading activity has very seldom been attempted up to this point. Therefore, the current research focuses on the use of zinc selenide nanomaterials, which are produced via a green synthesis process from the organic waste peels of orange and potato using the hydrothermal method, and utilizes them as photocatalysts for the degradation of dyes using sunlight as a natural source of light. The crystal structure, bandgap, and surface morphology and analysis of the synthesized materials serve as indicators of their characteristics. Citrate in orange peel-mediated synthesis assists in forming a particle size of 1.85 nm and a large surface area of 17.078 m2/g enabling more surface-active sites resulting in degradation efficiency of 97.16% and 93.61% for methylene blue and Congo red dye, respectively, which outperforms commercial ZnSe in the dye degradation. The presented work maintains overall sustainability in real-practical applications by utilizing sunlight in photocatalytic degradation activity instead of sophisticated equipment and using waste peels as a capping and stabilizing agent in the green synthesis method for the preparation of photocatalysts.


Assuntos
Nanopartículas , Nanoestruturas , Luz Solar , Corantes/química , Compostos Azo/química , Nanopartículas/química , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA