Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 84: 101945, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653401

RESUMO

OBJECTIVE: Glucose dependent insulinotropic polypeptide (GIP) is well established as an incretin hormone, boosting glucose-dependent insulin secretion. However, whilst anorectic actions of its sister-incretin glucagon-like peptide-1 (GLP-1) are well established, a physiological role for GIP in appetite regulation is controversial, despite the superior weight loss seen in preclinical models and humans with GLP-1/GIP dual receptor agonists compared with GLP-1R agonism alone. METHODS: We generated a mouse model in which GIP expressing K-cells can be activated through hM3Dq Designer Receptor Activated by Designer Drugs (DREADD, GIP-Dq) to explore physiological actions of intestinally-released GIP. RESULTS: In lean mice, Dq-stimulation of GIP expressing cells increased plasma GIP to levels similar to those found postprandially. The increase in GIP was associated with improved glucose tolerance, as expected, but also triggered an unexpected robust inhibition of food intake. Validating that this represented a response to intestinally-released GIP, the suppression of food intake was prevented by injecting mice peripherally or centrally with antagonistic GIPR-antibodies, and was reproduced in an intersectional model utilising Gip-Cre/Villin-Flp to limit Dq transgene expression to K-cells in the intestinal epithelium. The effects of GIP cell activation were maintained in diet induced obese mice, in which chronic K-cell activation reduced food intake and attenuated body weight gain. CONCLUSIONS: These studies establish a physiological gut-brain GIP-axis regulating food intake in mice, adding to the multi-faceted metabolic effects of GIP which need to be taken into account when developing GIPR-targeted therapies for obesity and diabetes.


Assuntos
Peso Corporal , Ingestão de Alimentos , Polipeptídeo Inibidor Gástrico , Animais , Polipeptídeo Inibidor Gástrico/metabolismo , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Mucosa Intestinal/metabolismo , Obesidade/metabolismo , Incretinas/metabolismo
2.
Front Endocrinol (Lausanne) ; 14: 1217021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554763

RESUMO

Introduction: Oxyntomodulin (Oxm) hormone peptide has a number of beneficial effects on nutrition and metabolism including increased energy expenditure and reduced body weight gain. Despite its many advantages as a potential therapeutic agent, Oxm is subjected to rapid renal clearance and protease degradation limiting its clinical application. Previously, we have shown that subcutaneous administration of a fibrillar Oxm formulation can significantly prolong its bioactivity in vivo from a few hours to a few days. Methods: We used a protease resistant analogue of Oxm, Aib2-Oxm, to form nanfibrils depot and improve serum stability of released peptide. The nanofibrils and monomeric peptide in solution were characterized by spectroscopic, microscopic techniques, potency assay, QCM-D and in vivo studies. Results: We show that in comparison to Oxm, Aib2-Oxm fibrils display a slower elongation rate requiring higher ionic strength solutions, and a higher propensity to dissociate. Upon subcutaneous administration of fibrillar Aib2-Oxm in rodents, a 5-fold increase in bioactivity relative to fibrillar Oxm and a significantly longer bioactivity than free Aib2-Oxm were characterized. Importantly, a decrease in food intake was observed up to 72-hour post-administration, which was not seen for free Aib2-Oxm. Conclusion: Our findings provides compelling evidence for the development of long-lasting peptide fibrillar formulations that yield extended plasma exposure and enhanced in vivo pharmacological response.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Glucagon , Ingestão de Alimentos/fisiologia , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Oxintomodulina/química , Oxintomodulina/farmacologia , Peptídeo Hidrolases , Peptídeos/farmacologia , Receptores de Glucagon/metabolismo , Animais
3.
Mol Metab ; 55: 101392, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34781035

RESUMO

OBJECTIVE: Obesity-linked type 2 diabetes (T2D) is a worldwide health concern and many novel approaches are being considered for its treatment and subsequent prevention of serious comorbidities. Co-administration of glucagon like peptide 1 (GLP-1) and peptide YY3-36 (PYY3-36) renders a synergistic decrease in energy intake in obese men. However, mechanistic details of the synergy between these peptide agonists and their effects on metabolic homeostasis remain relatively scarce. METHODS: In this study, we utilized long-acting analogues of GLP-1 and PYY3-36 (via Fc-peptide conjugation) to better characterize the synergistic pharmacological benefits of their co-administration on body weight and glycaemic regulation in obese and diabetic mouse models. Hyperinsulinemic-euglycemic clamps were used to measure weight-independent effects of Fc-PYY3-36 + Fc-GLP-1 on insulin action. Fluorescent light sheet microscopy analysis of whole brain was performed to assess activation of brain regions. RESULTS: Co-administration of long-acting Fc-IgG/peptide conjugates of Fc-GLP-1 and Fc-PYY3-36 (specific for PYY receptor-2 (Y2R)) resulted in profound weight loss, restored glucose homeostasis, and recovered endogenous ß-cell function in two mouse models of obese T2D. Hyperinsulinemic-euglycemic clamps in C57BLKS/J db/db and diet-induced obese Y2R-deficient (Y2RKO) mice indicated Y2R is required for a weight-independent improvement in peripheral insulin sensitivity and enhanced hepatic glycogenesis. Brain cFos staining demonstrated distinct temporal activation of regions of the hypothalamus and hindbrain following Fc-PYY3-36 + Fc-GLP-1R agonist administration. CONCLUSIONS: These results reveal a therapeutic approach for obesity/T2D that improved insulin sensitivity and restored endogenous ß-cell function. These data also highlight the potential association between the gut-brain axis in control of metabolic homeostasis.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Obesidade/metabolismo , Peptídeo YY/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Energia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Derivação Gástrica , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipotálamo , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/fisiopatologia , Peptídeo YY/fisiologia , Redução de Peso
4.
Sci Rep ; 11(1): 22521, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795324

RESUMO

Peptide therapeutics are increasingly used in the treatment of disease, but their administration by injection reduces patient compliance and convenience, especially for chronic diseases. Thus, oral administration of a peptide therapeutic represents a significant advance in medicine, but is challenged by gastrointestinal instability and ineffective uptake into the circulation. Here, we have used glucagon-like peptide-1 (GLP-1) as a model peptide therapeutic for treating obesity-linked type 2 diabetes, a common chronic disease. We describe a comprehensive multidisciplinary approach leading to the development of MEDI7219, a GLP-1 receptor agonist (GLP-1RA) specifically engineered for oral delivery. Sites of protease/peptidase vulnerabilities in GLP-1 were removed by amino acid substitution and the peptide backbone was bis-lipidated to promote MEDI7219 reversible plasma protein binding without affecting potency. A combination of sodium chenodeoxycholate and propyl gallate was used to enhance bioavailability of MEDI7219 at the site of maximal gastrointestinal absorption, targeted by enteric-coated tablets. This synergistic approach resulted in MEDI7219 bioavailability of ~ 6% in dogs receiving oral tablets. In a dog model of obesity and insulin resistance, MEDI7219 oral tablets significantly decreased food intake, body weight and glucose excursions, validating the approach. This novel approach to the development of MEDI7219 provides a template for the development of other oral peptide therapeutics.


Assuntos
Doença Crônica , Sistemas de Liberação de Medicamentos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Peptídeos , Engenharia de Proteínas , Animais , Cricetinae , Humanos , Masculino , Camundongos , Administração Oral , Células CACO-2 , Química Farmacêutica/métodos , Ácido Quenodesoxicólico/administração & dosagem , Células CHO , Doença Crônica/tratamento farmacológico , Cricetulus , Diabetes Mellitus Tipo 2/tratamento farmacológico , Descoberta de Drogas , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Células Secretoras de Insulina/citologia , Camundongos Endogâmicos C57BL , Peptídeos/química , Galato de Propila/administração & dosagem , Engenharia de Proteínas/métodos , Receptores de Glucagon/agonistas , Comprimidos com Revestimento Entérico
5.
Nat Metab ; 2(5): 413-431, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32478287

RESUMO

Non-alcoholic fatty liver disease and steatohepatitis are highly associated with obesity and type 2 diabetes mellitus. Cotadutide, a GLP-1R/GcgR agonist, was shown to reduce blood glycemia, body weight and hepatic steatosis in patients with T2DM. Here, we demonstrate that the effects of Cotadutide to reduce body weight, food intake and improve glucose control are predominantly mediated through the GLP-1 signaling, while, its action on the liver to reduce lipid content, drive glycogen flux and improve mitochondrial turnover and function are directly mediated through Gcg signaling. This was confirmed by the identification of phosphorylation sites on key lipogenic and glucose metabolism enzymes in liver of mice treated with Cotadutide. Complementary metabolomic and transcriptomic analyses implicated lipogenic, fibrotic and inflammatory pathways, which are consistent with a unique therapeutic contribution of GcgR agonism by Cotadutide in vivo. Significantly, Cotadutide also alleviated fibrosis to a greater extent than Liraglutide or Obeticholic acid (OCA), despite adjusting dose to achieve similar weight loss in 2 preclinical mouse models of NASH. Thus Cotadutide, via direct hepatic (GcgR) and extra-hepatic (GLP-1R) effects, exerts multi-factorial improvement in liver function and is a promising therapeutic option for the treatment of steatohepatitis.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Lipogênese/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Peptídeos/uso terapêutico , Animais , Glicemia/metabolismo , Peso Corporal , Diabetes Mellitus Tipo 2/complicações , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Glicogênio/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteômica
6.
Mol Metab ; 32: 44-55, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32029229

RESUMO

OBJECTIVE: Glucose-dependent insulinotropic polypeptide is an intestinally derived hormone that is essential for normal metabolic regulation. Loss of the GIP receptor (GIPR) through genetic elimination or pharmacological antagonism reduces body weight and adiposity in the context of nutrient excess. Interrupting GIPR signaling also enhances the sensitivity of the receptor for the other incretin peptide, glucagon-like peptide 1 (GLP-1). The role of GLP-1 compensation in loss of GIPR signaling to protect against obesity has not been directly tested. METHODS: We blocked the GIPR and GLP-1R with specific antibodies, alone and in combination, in healthy and diet-induced obese (DIO) mice. The primary outcome measure of these interventions was the effect on body weight and composition. RESULTS: Antagonism of either the GIPR or GLP-1R system reduced food intake and weight gain during high-fat feeding and enhanced sensitivity to the alternative incretin signaling system. Combined antagonism of both GIPR and GLP-1R produced additive effects to mitigate DIO. Acute pharmacological studies using GIPR and GLP-1R agonists demonstrated both peptides reduced food intake, which was prevented by co-administration of the respective antagonists. CONCLUSIONS: Disruption of either axis of the incretin system protects against diet-induced obesity in mice. However, combined antagonism of both GIPR and GLP-1R produced additional protection against diet-induced obesity, suggesting additional factors beyond compensation by the complementary incretin axis. While antagonizing the GLP-1 system decreases weight gain, GLP-1R agonists are used clinically to target obesity. Hence, the phenotype arising from loss of function of GLP-1R does not implicate GLP-1 as an obesogenic hormone. By extension, caution is warranted in labeling GIP as an obesogenic hormone based on loss-of-function studies.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Incretinas/uso terapêutico , Obesidade/tratamento farmacológico , Animais , Fármacos Antiobesidade/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Incretinas/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/induzido quimicamente , Obesidade/metabolismo , Aumento de Peso/efeitos dos fármacos
7.
J Clin Invest ; 129(9): 3786-3791, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31403469

RESUMO

Nutrient excess, a major driver of obesity, diminishes hypothalamic responses to exogenously administered leptin, a critical hormone of energy balance. Here, we aimed to identify a physiological signal that arises from excess caloric intake and negatively controls hypothalamic leptin action. We found that deficiency of the gastric inhibitory polypeptide receptor (Gipr) for the gut-derived incretin hormone GIP protected against diet-induced neural leptin resistance. Furthermore, a centrally administered antibody that neutralizes GIPR had remarkable antiobesity effects in diet-induced obese mice, including reduced body weight and adiposity, and a decreased hypothalamic level of SOCS3, an inhibitor of leptin actions. In contrast, centrally administered GIP diminished hypothalamic sensitivity to leptin and increased hypothalamic levels of Socs3. Finally, we show that GIP increased the active form of the small GTPase Rap1 in the brain and that its activation was required for the central actions of GIP. Altogether, our results identify GIPR/Rap1 signaling in the brain as a molecular pathway linking overnutrition to the control of neural leptin actions.


Assuntos
Hipotálamo/metabolismo , Incretinas/metabolismo , Leptina/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Proteínas rap1 de Ligação ao GTP/metabolismo , Adiposidade/genética , Animais , Incretinas/genética , Leptina/genética , Camundongos , Obesidade/genética , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteínas rap1 de Ligação ao GTP/genética
8.
Diabetologia ; 62(3): 373-386, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30593607

RESUMO

AIMS/HYPOTHESIS: Cardiovascular disease is the leading cause of morbidity and mortality in people with type 2 diabetes. MEDI4166 is a proprotein convertase subtilisin/kexin type 9 (PCSK9) antibody and glucagon-like peptide-1 (GLP-1) analogue fusion molecule designed to treat patients with type 2 diabetes who are at risk for cardiovascular disease. In this completed, first-in-human study, we evaluated the safety and efficacy of single or multiple doses of MEDI4166 in participants with type 2 diabetes. METHODS: In this phase 1 study that was conducted across 11 clinics in the USA, eligible adults had type 2 diabetes, a BMI of ≥25 kg/m2 to ≤42 kg/m2, and LDL-cholesterol levels ≥1.81 mmol/l. Participants were randomised 3:1 to receive MEDI4166 or placebo using an interactive voice/web response system, which blinded all participants, investigators and study site personnel to the study drug administered. In 'Part A' of the study, five cohorts of participants received a single s.c. injection of MEDI4166 at 10 mg, 30 mg, 100 mg, 200 mg or 400 mg, or placebo. 'Part B' of the study consisted of three cohorts of participants who received an s.c. dose of MEDI4166 once weekly for 5 weeks at 50 mg, 200 mg or 400 mg, or placebo. The primary endpoint in Part A was safety. The co-primary endpoints in Part B were change in LDL-cholesterol levels and area under the plasma glucose concentration-time curve (AUC0-4h) post-mixed-meal tolerance test (MMTT) from baseline to day 36. The pharmacokinetics and immunogenicity of MEDI4166 were also evaluated. RESULTS: MEDI4166 or placebo was administered to n = 30 or n = 10 participants, respectively, in Part A of the study, and n = 48 or n = 15 participants, respectively, in Part B. The incidence of treatment-emergent adverse events (TEAEs) were comparable between MEDI4166 and placebo in both Part A (60% vs 50%) and Part B (79% vs 87%) of the study. Common TEAEs with MEDI4166 included injection-site reactions, diarrhoea and headache; there was no evidence for dose-related increases in TEAEs. In Part B of the study, at all tested doses of MEDI4166, there was a significant decrease in LDL-cholesterol levels vs placebo (least squares mean [95% CI]; MEDI4166 50 mg, -1.25 [-1.66, -0.84]; MEDI4166 200 mg, -1.97 [-2.26, -1.68]; MEDI4166 400 mg, -1.96 [-2.23, -1.70]; placebo, -0.03 [-0.35, 0.28]; all p < 0.0001). However, there were no clinically relevant reductions or significant differences between MEDI4166 vs placebo in glucose AUC0-4h post-MMTT (least squares mean [95% CI]; MEDI4166 50 mg, -10.86 [-17.69, -4.02]; MEDI4166 200 mg, -4.23 [-8.73, 0.28]; MEDI4166 400 mg, -2.59 [-7.14, 1.95]; placebo, -4.84 [-9.95, 0.28]; all p > 0.05). MEDI4166 was associated with a pharmacokinetic profile supportive of weekly dosing and an overall treatment-induced anti-drug antibody-positive rate of 22%. CONCLUSIONS/INTERPRETATION: MEDI4166 was associated with an acceptable tolerability profile and significantly decreased LDL-cholesterol levels in a dose-dependent manner in overweight or obese patients with type 2 diabetes. However, there were no significant reductions in postprandial glucose levels at any dose of MEDI4166. TRIAL REGISTRATION: ClinicalTrials.gov NCT02524782 FUNDING: This study was funded by MedImmune LLC, Gaithersburg, MD, USA.


Assuntos
Anticorpos/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Obesidade/tratamento farmacológico , Sobrepeso/tratamento farmacológico , Pró-Proteína Convertase 9/imunologia , Diabetes Mellitus Tipo 2/complicações , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Sobrepeso/complicações , Resultado do Tratamento
9.
Sci Rep ; 8(1): 17545, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510163

RESUMO

Type 2 diabetes (T2D) is a complex and progressive disease requiring polypharmacy to manage hyperglycaemia and cardiovascular risk factors. However, most patients do not achieve combined treatment goals. To address this therapeutic gap, we have developed MEDI4166, a novel glucagon-like peptide-1 (GLP-1) receptor agonist peptide fused to a proprotein convertase subtilisin/kexin type 9 (PCSK9) neutralising antibody that allows for glycaemic control and low-density lipoprotein cholesterol (LDL-C) lowering in a single molecule. The fusion has been engineered to deliver sustained peptide activity in vivo in combination with reduced potency, to manage GLP-1 driven adverse effects at high dose, and a favourable manufacturability profile. MEDI4166 showed robust and sustained LDL-C lowering in cynomolgus monkeys and exhibited the anticipated GLP-1 effects in T2D mouse models. We believe MEDI4166 is a novel molecule combining long acting agonist peptide and neutralising antibody activities to deliver a unique pharmacology profile for the management of T2D.


Assuntos
Anticorpos Monoclonais , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Peptídeo 1 Semelhante ao Glucagon , Hipoglicemiantes , Inibidores de PCSK9 , Proteínas Recombinantes de Fusão , Animais , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/farmacologia , Células CHO , Cricetulus , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Células Hep G2 , Humanos , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Macaca fascicularis , Masculino , Camundongos , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/farmacologia
10.
Diabetologia ; 61(3): 711-721, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29119245

RESUMO

AIMS/HYPOTHESIS: Glucagon like peptide-1 (GLP-1) enhances glucose-dependent insulin secretion by binding to GLP-1 receptors (GLP1Rs) on pancreatic beta cells. GLP-1 mimetics are used in the clinic for the treatment of type 2 diabetes, but despite their therapeutic success, several clinical effects of GLP-1 remain unexplained at a mechanistic level, particularly in extrapancreatic tissues. The aim of this study was to generate and characterise a monoclonal antagonistic antibody for the GLP1R for use in vivo. METHODS: A naive phage display selection strategy was used to isolate single-chain variable fragments (ScFvs) that bound to GLP1R. The ScFv with the highest affinity, Glp1R0017, was converted into a human IgG1 and characterised further. In vitro antagonistic activity was assessed in a number of assays: a cAMP-based homogenous time-resolved fluorescence assay in GLP1R-overexpressing cell lines, a live cell cAMP imaging assay and an insulin secretion assay in INS-1 832/3 cells. Glp1R0017 was further tested in immunostaining of mouse pancreas, and the ability of Glp1R0017 to block GLP1R in vivo was assessed by both IPGTT and OGTT in C57/Bl6 mice. RESULTS: Antibodies to GLP1R were selected from naive antibody phage display libraries. The monoclonal antibody Glp1R0017 antagonised mouse, human, rat, cynomolgus monkey and dog GLP1R. This antagonistic activity was specific to GLP1R; no antagonistic activity was found in cells overexpressing the glucose-dependent insulinotropic peptide receptor (GIPR), glucagon like peptide-2 receptor or glucagon receptor. GLP-1-stimulated cAMP and insulin secretion was attenuated in INS-1 832/3 cells by Glp1R0017 incubation. Immunostaining of mouse pancreas tissue with Glp1R0017 showed specific staining in the islets of Langerhans, which was absent in Glp1r knockout tissue. In vivo, Glp1R0017 reversed the glucose-lowering effect of liraglutide during IPGTTs, and reduced glucose tolerance by blocking endogenous GLP-1 action in OGTTs. CONCLUSIONS/INTERPRETATION: Glp1R0017 is a monoclonal antagonistic antibody to the GLP1R that binds to GLP1R on pancreatic beta cells and blocks the actions of GLP-1 in vivo. This antibody holds the potential to be used in investigating the physiological importance of GLP1R signalling in extrapancreatic tissues where cellular targets and signalling pathways activated by GLP-1 are poorly understood.


Assuntos
Anticorpos/imunologia , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Receptor do Peptídeo Semelhante ao Glucagon 1/imunologia , Animais , Células CHO , Cálcio/metabolismo , Linhagem Celular , Cricetulus , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Imunoglobulina G/metabolismo , Incretinas/metabolismo , Insulina/metabolismo , Camundongos , Biblioteca de Peptídeos
11.
Nat Commun ; 8(1): 1026, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044101

RESUMO

The use of peptides as therapeutic agents is undergoing a renaissance with the expectation of new drugs with enhanced levels of efficacy and safety. Their clinical potential will be only fully realised once their physicochemical and pharmacokinetic properties have been precisely controlled. Here we demonstrate a reversible peptide self-assembly strategy to control and prolong the bioactivity of a native peptide hormone in vivo. We show that oxyntomodulin, a peptide with potential to treat obesity and diabetes, self-assembles into a stable nanofibril formulation which subsequently dissociates to release active peptide and produces a pharmacological effect in vivo. The subcutaneous administration of the nanofibrils in rats results in greatly prolonged exposure, with a constant oxyntomodulin bioactivity detectable in serum for at least 5 days as compared to free oxyntomodulin which is undetectable after only 4 h. Such an approach is simple, cost-efficient and generic in addressing the limitations of peptide therapeutics.


Assuntos
Obesidade/tratamento farmacológico , Oxintomodulina/farmacocinética , Hormônios Peptídicos/farmacocinética , Animais , Glucose/metabolismo , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Oxintomodulina/administração & dosagem , Oxintomodulina/sangue , Oxintomodulina/química , Hormônios Peptídicos/administração & dosagem , Hormônios Peptídicos/sangue , Hormônios Peptídicos/química , Ratos , Ratos Sprague-Dawley
12.
Curr Opin Pharmacol ; 37: 10-15, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28802873

RESUMO

Gut hormones have long been understood to regulate food intake and metabolism. Bariatric surgery significantly elevates circulating gut hormone levels and is proven to affect acute remission of type 2 diabetes before any weight loss is observed. Subsequent weight loss is accrued over weeks to months but is sustained into the long term. Hence, there exists great enthusiasm to recapitulate these changes in gut hormones in the form of novel combination drugs for type 2 diabetes and obesity.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Trato Gastrointestinal/metabolismo , Obesidade/tratamento farmacológico , Animais , Colecistocinina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Obesidade/metabolismo , Oxintomodulina/farmacologia , Peptídeo YY/metabolismo
13.
J Vis Exp ; (117)2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27911362

RESUMO

As with small molecule drug discovery, screening for peptide agonists requires the serial dilution of peptides to produce concentration-response curves. Screening peptides affords an additional layer of complexity as conventional tip-based sample handling methods expose peptides to a large surface area of plasticware, providing an increased opportunity for peptide loss via adsorption. Preventing excessive exposure to plasticware reduces peptide loss via adherence to plastics and thus minimizes inaccuracies in potency prediction, and we have previously described the benefits of non-contact acoustic dispensing for in vitro high-throughput screening of peptide agonists1. Here we discuss a fully integrated automation solution for non-contact acoustic preparation of peptide serial dilutions in microtiter plates utilizing the example of screening for peptide agonists at the mouse glucagon-like peptide-1 receptor (GLP-1R). Our methods allow for high-throughput cell-based assays to screen for agonists and are easily scalable to support increased sample throughput, or to allow for increased numbers of assay plate copies (e.g., for a panel of more target cell lines).


Assuntos
Bioensaio , Peptídeos/agonistas , Acústica , Animais , Automação , Camundongos
14.
Biochem J ; 473(18): 2881-91, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27422784

RESUMO

Dual-agonist molecules combining glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) activity represent an exciting therapeutic strategy for diabetes treatment. Although challenging due to shared downstream signalling pathways, determining the relative activity of dual agonists at each receptor is essential when developing potential novel therapeutics. The challenge is exacerbated in physiologically relevant cell systems expressing both receptors. To this end, either GIP receptors (GIPR) or GLP-1 receptors (GLP-1R) were ablated via RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 endonucleases in the INS-1 pancreatic ß-cell line. Multiple clonal cell lines harbouring gene disruptions for each receptor were isolated and assayed for receptor activity to identify functional knockouts (KOs). cAMP production in response to GIPR or GLP-1R activation was abolished and GIP- or GLP-1-induced potentiation of glucose-stimulated insulin secretion (GSIS) was attenuated in the cognate KO cell lines. The contributions of individual receptors derived from cAMP and GSIS assays were confirmed in vivo using GLP-1R KO mice in combination with a monoclonal antibody antagonist of GIPR. We have successfully applied CRISPR/Cas9-engineered cell lines to determining selectivity and relative potency contributions of dual-agonist molecules targeting receptors with overlapping native expression profiles and downstream signalling pathways. Specifically, we have characterised molecules as biased towards GIPR or GLP-1R, or with relatively balanced potency in a physiologically relevant ß-cell system. This demonstrates the broad utility of CRISPR/Cas9 when applied to native expression systems for the development of drugs that target multiple receptors, particularly where the balance of receptor activity is critical.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Peptídeo 1 Semelhante ao Glucagon/agonistas , Ilhotas Pancreáticas/citologia , Receptores dos Hormônios Gastrointestinais/agonistas , Animais , Linhagem Celular , Glucose/farmacologia , Teste de Tolerância a Glucose , Humanos , Insulina/metabolismo , Secreção de Insulina , Cariotipagem , Camundongos , Camundongos Knockout , Receptores dos Hormônios Gastrointestinais/genética
15.
Br J Pharmacol ; 173(3): 562-74, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26565375

RESUMO

BACKGROUND AND PURPOSE: The TRPC5 proteins assemble to create calcium-permeable, non-selective, cationic channels. We sought novel modulators of these channels through studies of natural products. EXPERIMENTAL APPROACH: Intracellular calcium measurements and patch clamp recordings were made from cell lines. Compounds were generated by synthetic chemistry. KEY RESULTS: Through a screen of natural products used in traditional Chinese medicines, the flavonol galangin was identified as an inhibitor of lanthanide-evoked calcium entry in TRPC5 overexpressing HEK 293 cells (IC50 0.45 µM). Galangin also inhibited lanthanide-evoked TRPC5-mediated current in whole-cell and outside-out patch recordings. In differentiated 3T3-L1 cells, it inhibited constitutive and lanthanide-evoked calcium entry through endogenous TRPC5-containing channels. The related natural flavonols, kaempferol and quercetin were less potent inhibitors of TRPC5. Myricetin and luteolin lacked effect, and apigenin was a stimulator. Based on structure-activity relationship studies with natural and synthetic flavonols, we designed 3,5,7-trihydroxy-2-(2-bromophenyl)-4H-chromen-4-one (AM12), which inhibited lanthanide-evoked TRPC5 activity with an IC50 of 0.28 µM. AM12 also inhibited TRPC5 activity evoked by the agonist (-)-Englerin A and was effective in excised outside-out membrane patches, suggesting a relatively direct effect. It inhibited TRPC4 channels similarly, but its inhibitory effect on TRPC1-TRPC5 heteromeric channels was weaker. CONCLUSIONS AND IMPLICATIONS: The data suggest that galangin (a natural product from the ginger family) is a TRPC5 inhibitor and that other natural and synthetic flavonoids contain antagonist or agonist capabilities at TRPC5 and closely related channels depending on the substitution patterns of both the chromone core and the phenyl ring.


Assuntos
Flavonoides/farmacologia , Canais de Cátion TRPC/fisiologia , Células 3T3-L1 , Animais , Cálcio/metabolismo , Gadolínio/farmacologia , Células HEK293 , Humanos , Lantânio/farmacologia , Camundongos , Canais de Cátion TRPC/genética
16.
J Lab Autom ; 21(1): 90-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26002890

RESUMO

Routine peptide structure-activity relationship screening requires the serial dilution of peptides to produce full concentration-response curves. Established tip-based protocols involve multiple tip changes and high exposure to plasticware. In the case of peptides, this becomes a challenge, since peptides can adsorb to plastic, resulting in an observed loss of potency. Various methods can be employed to prevent peptide loss during compound handling, such as the inclusion of bovine serum albumin or solvents in assay buffer and the siliconization of plasticware, yet protein binding remains unpredictable. The degree of variation by which peptides will adhere to plasticware can confuse results and cause inaccuracies in potency predictions. We evaluated acoustic noncontact methods for peptide serial dilution and compared it with traditional tip-based methods, on the effect on potency curves for glucagon-like peptide-1 and glucagon peptide analogues. The current study demonstrates the benefits of noncontact dispensing for high-density microplate assay preparation of peptides using nanoliter droplets across our entire drug discovery workflow, from in vitro high-throughput screening to drug exposure determinations from in vivo samples.


Assuntos
Tecnologia Biomédica/métodos , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Glucagon/farmacologia , Acústica , Tecnologia Biomédica/instrumentação , Soluções , Relação Estrutura-Atividade , Fluxo de Trabalho
17.
J Biomol Screen ; 20(4): 528-35, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25534831

RESUMO

Biologics represent a fast-growing class of therapeutics in the pharmaceutical sector. Discovery of therapeutic antibodies and characterization of peptides can necessitate high expression of the target gene requiring the generation of clonal stably transfected cell lines. Traditional challenges of stable cell line transfection include gene silencing and cell-to-cell variability. Our inability to control these can present challenges in lead isolation. Recent progress in site-specific targeting of transgene to specific genomic loci has transformed the ability to generate stably transfected mammalian cell lines. In this article, we describe how the use of the Jump-In platform (Life Technologies, Carlsbad, CA) has been applied to drug discovery projects. It can easily and rapidly generate homogeneous high-expressing cell pools with a high degree of reproducibility. Their use in cell-based screening to identify specific binders, identify binding to relevant species variants, or detect functionally relevant therapeutic antibodies is central in driving drug discovery.


Assuntos
Descoberta de Drogas , Animais , Células CHO , Cricetinae , Cricetulus
18.
Methods Mol Biol ; 998: 245-56, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23529435

RESUMO

There is demand for isoform-specific ion channel inhibitors as tools to investigate the biology of -endogenous ion channels and validate them as targets in drug discovery programs. There is also hope that such inhibitors may be new therapeutic agents or provide the foundation for such agents. However, in practice, it is commonly experienced that inhibitors lack sufficient specificity, fail to distinguish between members of a class of ion channel, or have other (non-ion channel) off-target effects. Due to their extraordinary specificity, antibodies offer a potentially attractive strategy for overcoming these problems. Inhibitory antibodies acting at the extracellular face of ion channels are particularly attractive because there is enhanced possibility for specificity and intracellular delivery methods are not required. Here we describe experience with such an antibody approach and methodology for generating agents based on anti-peptide polyclonal antibodies.


Assuntos
Anticorpos/imunologia , Canais Iônicos/imunologia , Anticorpos/sangue , Anticorpos/isolamento & purificação , Diálise , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Peptídeos/imunologia , Isoformas de Proteínas/imunologia
19.
Br J Pharmacol ; 168(6): 1445-55, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23121507

RESUMO

BACKGROUND AND PURPOSE: The Sigma-1 receptor (Sig1R) impacts on calcium ion signalling and has a plethora of ligands. This study investigated Sig1R and its ligands in relation to endogenous calcium events of endothelial cells and transient receptor potential (TRP) channels. EXPERIMENTAL APPROACH: Intracellular calcium and patch clamp measurements were made from human saphenous vein endothelial cells and HEK 293 cells expressing exogenous human TRPC5, TRPM2 or TRPM3. Sig1R ligands were applied and short interfering RNA was used to deplete Sig1R. TRP channels tagged with fluorescent proteins were used for subcellular localization studies. KEY RESULTS: In endothelial cells, 10-100 µM of the Sig1R antagonist BD1063 inhibited sustained but not transient calcium responses evoked by histamine. The Sig1R agonist 4-IBP and related antagonist BD1047 were also inhibitory. The Sig1R agonist SKF10047 had no effect. Sustained calcium entry evoked by VEGF or hydrogen peroxide was also inhibited by BD1063, BD1047 or 4-IBP, but not SKF10047. 4-IBP, BD1047 and BD1063 inhibited TRPC5 or TRPM3, but not TRPM2. Inhibitory effects of BD1047 were rapid in onset and readily reversed on washout. SKF10047 inhibited TRPC5 but not TRPM3 or TRPM2. Depletion of Sig1R did not prevent the inhibitory actions of BD1063 or BD1047 and Sig1R did not co-localize with TRPC5 or TRPM3. CONCLUSIONS AND IMPLICATIONS: The data suggest that two types of Sig1R ligand (BD1047/BD1063 and 4-IBP) are inhibitors of receptor- or chemically activated calcium entry channels, acting relatively directly and independently of the Sig1R. Chemical foundations for TRP channel inhibitors are suggested.


Assuntos
Sinalização do Cálcio , Endotélio Vascular/metabolismo , Receptores sigma/metabolismo , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPM/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Células HEK293 , Histamina/metabolismo , Humanos , Cinética , Ligantes , Potenciais da Membrana/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Técnicas de Patch-Clamp , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno , Receptores sigma/agonistas , Receptores sigma/antagonistas & inibidores , Receptores sigma/genética , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/genética , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor Sigma-1
20.
Cell Calcium ; 51(1): 1-11, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22000496

RESUMO

Transient Receptor Potential Melastatin 3 (TRPM3) is a widely expressed calcium-permeable non-selective cation channel that is stimulated by high concentrations of nifedipine or by physiological steroids that include pregnenolone sulphate. Here we sought to identify steroids that inhibit TRPM3. Channel activity was studied using calcium-measurement and patch-clamp techniques. Progesterone (0.01-10µM) suppressed TRPM3 activity evoked by pregnenolone sulphate. Progesterone metabolites and 17ß-oestradiol were also inhibitory but the effects were relatively small. Dihydrotestosterone was an inhibitor at concentrations higher than 1µM. Corticosteroids lacked effect. Overlay assays indicated that pregnenolone sulphate, progesterone and dihydrotestosterone bound to TRPM3. In contrast to dihydrotestosterone, progesterone inhibited nifedipine-evoked TRPM3 activity or activity in the absence of an exogenous activator, suggesting a pregnenolone sulphate-independent mechanism of action. Dihydrotestosterone, like a non-steroid look-alike compound, acted as a competitive antagonist at the pregnenolone sulphate binding site. Progesterone inhibited endogenous TRPM3 in vascular smooth muscle cells. Relevance of TRPM3 or the progesterone effect to ovarian cells, which have been suggested to express TRPM3, was not identified. The data further define a chemical framework for competition with pregnenolone sulphate at TRPM3 and expand knowledge of steroid interactions with TRPM3, suggesting direct steroid binding and pregnenolone sulphate-independent inhibition by progesterone.


Assuntos
Pregnenolona/farmacologia , Progesterona/farmacologia , Canais de Cátion TRPM/metabolismo , Corticosteroides/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Bovinos , Di-Hidrotestosterona/farmacologia , Estradiol/farmacologia , Feminino , Células da Granulosa/citologia , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Mifepristona/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Nifedipino/farmacologia , Pregnenolona/química , Progesterona/química , Ligação Proteica/efeitos dos fármacos , Receptores de Progesterona/metabolismo , Canais de Cátion TRPM/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA