Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Front Immunol ; 14: 1291048, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38343437

RESUMO

Background: Understanding how HIV affects SARS-CoV-2 immunity is crucial for managing COVID-19 in sub-Saharan populations due to frequent coinfections. Our previous research showed that unsuppressed HIV is associated with weaker immune responses to SARS-CoV-2, but the underlying mechanisms are unclear. We investigated how pre-existing T cell immunity against an endemic human coronavirus HCoV-NL63 impacts SARS-CoV-2 T cell responses in people living with HIV (PLWH) compared to uninfected individuals, and how HIV-related T cell dysfunction influences responses to SARS-CoV-2 variants. Methods: We used flow cytometry to measure T cell responses following PBMC stimulation with peptide pools representing beta, delta, wild-type, and HCoV-NL63 spike proteins. Luminex bead assay was used to measure circulating plasma chemokine and cytokine levels. ELISA and MSD V-PLEX COVID-19 Serology and ACE2 Neutralization assays were used to measure humoral responses. Results: Regardless of HIV status, we found a strong positive correlation between responses to HCoV-NL63 and SARS-CoV-2. However, PLWH exhibited weaker CD4+ T cell responses to both HCoV-NL63 and SARS-CoV-2 than HIV-uninfected individuals. PLWH also had higher proportions of functionally exhausted (PD-1high) CD4+ T cells producing fewer proinflammatory cytokines (IFNγ and TNFα) and had elevated plasma IL-2 and IL-12(p70) levels compared to HIV-uninfected individuals. HIV status didn't significantly affect IgG antibody levels against SARS-CoV-2 antigens or ACE2 binding inhibition activity. Conclusion: Our results indicate that the decrease in SARS-CoV-2 specific T cell responses in PLWH may be attributable to reduced frequencies of pre-existing cross-reactive responses. However, HIV infection minimally affected the quality and magnitude of humoral responses, and this could explain why the risk of severe COVID-19 in PLWH is highly heterogeneous.


Assuntos
COVID-19 , Coronavirus Humano NL63 , Infecções por HIV , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Infecções por HIV/epidemiologia , Leucócitos Mononucleares , Linfócitos T , Citocinas
2.
J Virol ; 96(24): e0127022, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36453881

RESUMO

Broadly neutralizing antibodies (bNAbs) for HIV-1 prevention or cure strategies must inhibit transmitted/founder and reservoir viruses. Establishing sensitivity of circulating viruses to bNAbs and genetic patterns affecting neutralization variability may guide rational bNAbs selection for clinical development. We analyzed 326 single env genomes from nine individuals followed longitudinally following acute HIV-1 infection, with samples collected at ~1 week after the first detection of plasma viremia; 300 to 1,709 days postinfection but prior to initiating antiretroviral therapy (ART) (median = 724 days); and ~1 year post ART initiation. Sequences were assessed for phylogenetic relatedness, potential N- and O-linked glycosylation, and variable loop lengths (V1 to V5). A total of 43 env amplicons (median = 3 per patient per time point) were cloned into an expression vector and the TZM-bl assay was used to assess the neutralization profiles of 15 bNAbs targeting the CD4 binding site, V1/V2 region, V3 supersite, MPER, gp120/gp41 interface, and fusion peptide. At 1 µg/mL, the neutralization breadths were as follows: VRC07-LS and N6.LS (100%), VRC01 (86%), PGT151 (81%), 10-1074 and PGT121 (80%), and less than 70% for 10E8, 3BNC117, CAP256.VRC26, 4E10, PGDM1400, and N123-VRC34.01. Features associated with low sensitivity to V1/V2 and V3 bNAbs were higher potential glycosylation sites and/or relatively longer V1 and V4 domains, including known "signature" mutations. The study shows significant variability in the breadth and potency of bNAbs against circulating HIV-1 subtype C envelopes. VRC07-LS, N6.LS, VRC01, PGT151, 10-1074, and PGT121 display broad activity against subtype C variants, and major determinants of sensitivity to most bNAbs were within the V1/V4 domains. IMPORTANCE Broadly neutralizing antibodies (bNAbs) have potential clinical utility in HIV-1 prevention and cure strategies. However, bNAbs target diverse epitopes on the HIV-1 envelope and the virus may evolve to evade immune responses. It is therefore important to identify antibodies with broad activity in high prevalence settings, as well as the genetic patterns that may lead to neutralization escape. We investigated 15 bNAbs with diverse biophysical properties that target six epitopes of the HIV-1 Env glycoprotein for their ability to inhibit viruses that initiated infection, viruses circulating in plasma at chronic infection before antiretroviral treatment (ART), or viruses that were archived in the reservoir during ART in subtype C infected individuals in South Africa, a high burden country. We identify the antibodies most likely to be effective for clinical use in this setting and describe mutational patterns associated with neutralization escape from these antibodies.


Assuntos
Infecções por HIV , Produtos do Gene env do Vírus da Imunodeficiência Humana , Humanos , Anticorpos Amplamente Neutralizantes/metabolismo , Epitopos/genética , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/genética , Filogenia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
3.
Elife ; 112022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35880744

RESUMO

In some instances, unsuppressed HIV has been associated with severe COVID-19 disease, but the mechanisms underpinning this susceptibility are still unclear. Here, we assessed the impact of HIV infection on the quality and epitope specificity of SARS-CoV-2 T cell responses in the first wave and second wave of the COVID-19 epidemic in South Africa. Flow cytometry was used to measure T cell responses following peripheral blood mononuclear cell stimulation with SARS-CoV-2 peptide pools. Culture expansion was used to determine T cell immunodominance hierarchies and to assess potential SARS-CoV-2 escape from T cell recognition. HIV-seronegative individuals had significantly greater CD4+ T cell responses against the Spike protein compared to the viremic people living with HIV (PLWH). Absolute CD4 count correlated positively with SARS-CoV-2-specific CD4+ and CD8+ T cell responses (CD4 r=0.5, p=0.03; CD8 r=0.5, p=0.001), whereas T cell activation was negatively correlated with CD4+ T cell responses (CD4 r=-0.7, p=0.04). There was diminished T cell cross-recognition between the two waves, which was more pronounced in individuals with unsuppressed HIV infection. Importantly, we identify four mutations in the Beta variant that resulted in abrogation of T cell recognition. Taken together, we show that unsuppressed HIV infection markedly impairs T cell responses to SARS-Cov-2 infection and diminishes T cell cross-recognition. These findings may partly explain the increased susceptibility of PLWH to severe COVID-19 and also highlights their vulnerability to emerging SARS-CoV-2 variants of concern.


Assuntos
COVID-19 , Infecções por HIV , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Infecções por HIV/complicações , Humanos , Leucócitos Mononucleares , SARS-CoV-2
4.
BMC Immunol ; 23(1): 34, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778692

RESUMO

BACKGROUND: HIV eradication efforts have been unsuccessful partly due to virus persistence in immune sanctuary sites such as germinal centres within lymph node (LN) tissues. Recent evidence suggests that LNs harbour a novel subset of regulatory T cells, termed follicular regulatory T cells (TFRs), but their role in HIV pathogenesis is not fully elucidated. RESULTS: Paired excisional LN and peripheral blood samples obtained from 20 HIV-uninfected and 31 HIV-infected treated and 7 chronic untreated, were used to determine if and how HIV infection modulate frequencies, function and spatial localization of TFRs within LN tissues. Imaging studies showed that most TFRs are localized in extra-follicular regions. Co-culture assays showed TFRs suppression of TFH help to B cells. Importantly, epigenetic and transcriptional studies identified DPP4 and FCRL3 as novel phenotypic markers that define four functionally distinct TFR subpopulations in human LNs regardless of HIV status. Imaging studies confirmed the regulatory phenotype of DPP4+TFRs. CONCLUSION: Together these studies describe TFRs dynamic changes during HIV infection and reveal previously underappreciated TFR heterogeneity within human LNs.


Assuntos
Infecções por HIV , Dipeptidil Peptidase 4 , Centro Germinativo , Humanos , Linfonodos , Linfócitos T Reguladores
5.
Nat Commun ; 13(1): 4041, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35831418

RESUMO

HIV persistence in tissue sites despite ART is a major barrier to HIV cure. Detailed studies of HIV-infected cells and immune responses in native lymph node tissue environment is critical for gaining insight into immune mechanisms impacting HIV persistence and clearance in tissue sanctuary sites. We compared HIV persistence and HIV-specific T cell responses in lymph node biopsies obtained from 14 individuals who initiated therapy in Fiebig stages I/II, 5 persons treated in Fiebig stages III-V and 17 late treated individuals who initiated ART in Fiebig VI and beyond. Using multicolor immunofluorescence staining and in situ hybridization, we detect HIV RNA and/or protein in 12 of 14 Fiebig I/II treated persons on suppressive therapy for 1 to 55 months, and in late treated persons with persistent antigens. CXCR3+ T follicular helper cells harbor the greatest amounts of gag mRNA transcripts. Notably, HIV-specific CD8+ T cells responses are associated with lower HIV antigen burden, suggesting that these responses may contribute to HIV suppression in lymph nodes during therapy. These results reveal HIV persistence despite the initiation of ART in hyperacute infection and highlight the contribution of virus-specific responses to HIV suppression in tissue sanctuaries during suppressive ART.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Infecções por HIV/tratamento farmacológico , Humanos , Linfonodos , Células T Auxiliares Foliculares
6.
JCI Insight ; 7(3)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35132966

RESUMO

The duodenum is a major site of HIV persistence during suppressive antiretroviral therapy despite harboring abundant tissue-resident memory (Trm) CD8+ T cells. The role of duodenal Trm CD8+ T cells in viral control is still not well defined. We examined the spatial localization, phenotype, and function of CD8+ T cells in the human duodenal tissue from people living with HIV (PLHIV) and healthy controls. We found that Trm (CD69+CD103hi) cells were the predominant CD8+ T cell population in the duodenum. Immunofluorescence imaging of the duodenal tissue revealed that CD103+CD8+ T cells were localized in the intraepithelial region, while CD103-CD8+ T cells and CD4+ T cells were mostly localized in the lamina propria (LP). Furthermore, HIV-specific CD8+ T cells were enriched in the CD69+CD103-/lo population. However, the duodenal HIV-specific CD8+ Trm cells rarely expressed canonical molecules for potent cytolytic function (perforin and granzyme B) but were more polyfunctional than those from peripheral blood. Taken together, our results show that duodenal CD8+ Trm cells possess limited perforin-mediated cytolytic potential and are spatially separated from HIV-susceptible LP CD4+ T cells. This could contribute to HIV persistence in the duodenum and provides critical information for the design of cure therapies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Duodeno/imunologia , Infecções por HIV/imunologia , HIV , Memória Imunológica/imunologia , Adulto , Linfócitos T CD8-Positivos/patologia , Duodeno/metabolismo , Duodeno/patologia , Feminino , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Humanos , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Masculino
7.
Blood Adv ; 6(6): 1904-1916, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-34991160

RESUMO

CD8+ T cells play an important role in HIV control. However, in human lymph nodes (LNs), only a small subset of CD8+ T cells express CXCR5, the chemokine receptor required for cell migration into B-cell follicles, which are major sanctuaries for HIV persistence in individuals on therapy. Here, we investigate the impact of HIV infection on follicular CD8+ T cell (fCD8) frequencies, trafficking patterns, and CXCR5 regulation. We show that, although HIV infection results in a marginal increase in fCD8s in LNs, the majority of HIV-specific CD8+ T cells are CXCR5- (non-fCD8s) (P < .003). Mechanistic investigations using Assay for Transposase-Accessible Chromatin using sequencing showed that non-fCD8s have closed chromatin at the CXCR5 transcriptional start site (TSS). DNA bisulfite sequencing identified DNA hypermethylation at the CXCR5 TSS as the most probable cause of closed chromatin. Transcriptional factor footprint analysis revealed enrichment of transforming growth factors (TGFs) at the TSS of fCD8s. In vitro stimulation of non-fCD8s with recombinant TGF-ß resulted in a significant increase in CXCR5 expression (fCD8s). Thus, this study identifies TGF-ß signaling as a viable strategy for increasing fCD8 frequencies in follicular areas of the LN where they are needed to eliminate HIV-infected cells, with implications for HIV cure strategies.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos B/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Infecções por HIV/genética , Humanos , Receptores CXCR5/genética , Receptores CXCR5/metabolismo
8.
Front Immunol ; 11: 590780, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193428

RESUMO

Following the discovery of HIV as a causative agent of AIDS, the expectation was to rapidly develop a vaccine; but thirty years later, we still do not have a licensed vaccine. Progress has been hindered by the extensive genetic variability of HIV and our limited understanding of immune responses required to protect against HIV acquisition. Nonetheless, valuable knowledge accrued from numerous basic and translational science research studies and vaccine trials has provided insight into the structural biology of the virus, immunogen design and novel vaccine delivery systems that will likely constitute an effective vaccine. Furthermore, stakeholders now appreciate the daunting scientific challenges of developing an effective HIV vaccine, hence the increased advocacy for collaborative efforts among academic research scientists, governments, pharmaceutical industry, philanthropy, and regulatory entities. In this review, we highlight the history of HIV vaccine development efforts, highlighting major challenges and future directions.


Assuntos
Vacinas contra a AIDS/história , Vacinas contra a AIDS/uso terapêutico , Animais , Anticorpos Neutralizantes/imunologia , Desenvolvimento de Medicamentos , HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , História do Século XX , História do Século XXI , Humanos , Linfócitos T/imunologia
9.
Nat Med ; 26(4): 511-518, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32251406

RESUMO

Cellular immunity is critical for controlling intracellular pathogens, but individual cellular dynamics and cell-cell cooperativity in evolving human immune responses remain poorly understood. Single-cell RNA-sequencing (scRNA-seq) represents a powerful tool for dissecting complex multicellular behaviors in health and disease1,2 and nominating testable therapeutic targets3. Its application to longitudinal samples could afford an opportunity to uncover cellular factors associated with the evolution of disease progression without potentially confounding inter-individual variability4. Here, we present an experimental and computational methodology that uses scRNA-seq to characterize dynamic cellular programs and their molecular drivers, and apply it to HIV infection. By performing scRNA-seq on peripheral blood mononuclear cells from four untreated individuals before and longitudinally during acute infection5, we were powered within each to discover gene response modules that vary by time and cell subset. Beyond previously unappreciated individual- and cell-type-specific interferon-stimulated gene upregulation, we describe temporally aligned gene expression responses obscured in bulk analyses, including those involved in proinflammatory T cell differentiation, prolonged monocyte major histocompatibility complex II upregulation and persistent natural killer (NK) cell cytolytic killing. We further identify response features arising in the first weeks of infection, for example proliferating natural killer cells, which potentially may associate with future viral control. Overall, our approach provides a unified framework for characterizing multiple dynamic cellular responses and their coordination.


Assuntos
Comunicação Celular , Infecções por HIV/genética , Infecções por HIV/imunologia , Imunidade Celular/fisiologia , Análise de Célula Única/métodos , Doença Aguda , Reação de Fase Aguda/genética , Reação de Fase Aguda/imunologia , Reação de Fase Aguda/patologia , Adolescente , Adulto , Comunicação Celular/genética , Comunicação Celular/imunologia , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/imunologia , Infecções por HIV/patologia , HIV-1/genética , HIV-1/patogenicidade , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Estudos Longitudinais , Análise de Sequência de RNA/métodos , Integração de Sistemas , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Carga Viral/genética , Carga Viral/imunologia , Adulto Jovem
10.
BMC Med ; 18(1): 81, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32209092

RESUMO

INTRODUCTION: Immunological damage in acute HIV infection (AHI) may predispose to detrimental clinical sequela. However, studies on the earliest HIV-induced immunological changes are limited, particularly in sub-Saharan Africa. We assessed the plasma cytokines kinetics, and their associations with virological and immunological parameters, in a well-characterized AHI cohort where participants were diagnosed before peak viremia. METHODS: Blood cytokine levels were measured using Luminex and ELISA assays pre-infection, during the hyperacute infection phase (before or at peak viremia, 1-11 days after the first detection of viremia), after peak viremia (24-32 days), and during the early chronic phase (77-263 days). Gag-protease-driven replicative capacities of the transmitted/founder viruses were determined using a green fluorescent reporter T cell assay. Complete blood counts were determined before and immediately following AHI detection before ART initiation. RESULTS: Untreated AHI was associated with a cytokine storm of 12 out of the 33 cytokines analyzed. Initiation of ART during Fiebig stages I-II abrogated the cytokine storm. In untreated AHI, virus replicative capacity correlated positively with IP-10 (rho = 0.84, P < 0.001) and IFN-alpha (rho = 0.59, P = 0.045) and inversely with nadir CD4+ T cell counts (rho = - 0.58, P = 0.048). Hyperacute HIV infection before the initiation of ART was associated with a transient increase in monocytes (P < 0.001), decreased lymphocytes (P = 0.011) and eosinophils (P = 0.003) at Fiebig stages I-II, and decreased eosinophils (P < 0.001) and basophils (P = 0.007) at Fiebig stages III-V. Levels of CXCL13 during the untreated hyperacute phase correlated inversely with blood eosinophils (rho = - 0.89, P < 0.001), basophils (rho = - 0.87, P = 0.001) and lymphocytes (rho = - 0.81, P = 0.005), suggesting their trafficking into tissues. In early treated individuals, time to viral load suppression correlated positively with plasma CXCL13 at the early chronic phase (rho = 0.83, P = 0.042). CONCLUSION: While commencement of ART during Fiebig stages I-II of AHI abrogated the HIV-induced cytokine storm, significant depletions of eosinophils, basophils, and lymphocytes, as well as transient expansions of monocytes, were still observed in these individuals in the hyperacute phase before the initiation of ART, suggesting that even ART initiated during the onset of viremia does not abrogate all HIV-induced immune changes.


Assuntos
Citocinas/uso terapêutico , Infecções por HIV/imunologia , Carga Viral/métodos , Viremia/imunologia , Adolescente , Adulto , Citocinas/farmacologia , Feminino , Infecções por HIV/tratamento farmacológico , Humanos , Masculino , Adulto Jovem
11.
Sci Transl Med ; 11(493)2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118290

RESUMO

Sustained viremia after acute HIV infection is associated with profound CD4+ T cell loss and exhaustion of HIV-specific CD8+ T cell responses. To determine the impact of combination antiretroviral therapy (cART) on these processes, we examined the evolution of immune responses in acutely infected individuals initiating treatment before peak viremia. Immediate treatment of Fiebig stages I and II infection led to a rapid decline in viral load and diminished magnitude of HIV-specific (tetramer+) CD8+ T cell responses compared to untreated donors. There was a strong positive correlation between cumulative viral antigen exposure before full cART-induced suppression and immune responses measured by MHC class I tetramers, IFN-γ ELISPOT, and CD8+ T cell activation. HIV-specific CD8+ T responses of early treated individuals were characterized by increased CD127 and BCL-2 expression, greater in vitro IFN-γ secretion, and enhanced differentiation into effector memory (Tem) cells. Transcriptional analysis of tetramer+ CD8+ T cells from treated persons revealed reduced expression of genes associated with activation and apoptosis, with concurrent up-regulation of prosurvival genes including BCL-2, AXL, and SRC Early treatment also resulted in robust HIV-specific CD4+ T cell responses compared to untreated HIV-infected individuals. Our data show that limiting acute viremia results in enhanced functionality of HIV-specific CD4+ and CD8+ T cells, preserving key antiviral properties of these cells.


Assuntos
Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV-1/imunologia , Linfócitos T/imunologia , Doença Aguda , Adolescente , Antirretrovirais/uso terapêutico , Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Proliferação de Células , Quimioterapia Combinada , Infecções por HIV/genética , Humanos , Memória Imunológica , Interferon gama/metabolismo , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Fenótipo , Ativação Transcricional/genética , Adulto Jovem
12.
Nat Commun ; 9(1): 5023, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30479346

RESUMO

Some closely related human leukocyte antigen (HLA) alleles are associated with variable clinical outcomes following HIV-1 infection despite presenting the same viral epitopes. Mechanisms underlying these differences remain unclear but may be due to intrinsic characteristics of the HLA alleles or responding T cell repertoires. Here we examine CD8+ T cell responses against the immunodominant HIV-1 Gag epitope TL9 (TPQDLNTML180-188) in the context of the protective allele B*81:01 and the less protective allele B*42:01. We observe a population of dual-reactive T cells that recognize TL9 presented by both B*81:01 and B*42:01 in individuals lacking one allele. The presence of dual-reactive T cells is associated with lower plasma viremia, suggesting a clinical benefit. In B*42:01 expressing individuals, the dual-reactive phenotype defines public T cell receptor (TCR) clones that recognize a wider range of TL9 escape variants, consistent with enhanced control of viral infection through containment of HIV-1 sequence adaptation.


Assuntos
HIV-1/metabolismo , Antígenos HLA-B/imunologia , Mutação/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Adulto , Sequência de Aminoácidos , Linfócitos T CD8-Positivos/imunologia , Células Clonais , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Carga Viral , Adulto Jovem , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química
13.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29793949

RESUMO

Despite decades of focused research, the field has yet to develop a prophylactic vaccine for HIV-1 infection. In the RV144 vaccine trial, nonneutralizing antibody responses were identified as a correlate for prevention of HIV acquisition. However, factors that predict the development of such antibodies are not fully elucidated. We sought to define the contribution of circulating T follicular helper (cTfh) subsets to the development of nonneutralizing antibodies in HIV-1 clade C infection. Study participants were recruited from an acute HIV-1 clade C infection cohort. Plasma anti-gp41, -gp120, -p24, and -p17 antibodies were screened using a customized multivariate Luminex assay. Phenotypic and functional characterizations of cTfh cells were performed using HLA class II tetramers and intracellular cytokine staining. In this study, we found that acute HIV-1 clade C infection skewed the differentiation of functional cTfh subsets toward increased Tfh1 (P = 0.02) and Tfh2 (P < 0.0001) subsets, with a concomitant decrease in overall Tfh1-17 (which shares both Tfh1 and Tfh17 properties) (P = 0.01) and Tfh17 (P < 0.0001) subsets, compared to the subsets found in HIV-negative subjects. Interestingly, the frequencies of Tfh1 cells during acute infection (5.0 to 8.0 weeks postinfection) correlated negatively with the set point viral load (P = 0.03, Spearman rho [r] = -60) and were predictive of p24-specific plasma IgG titers at 1 year of infection (P = 0.003, r = 0.85). Taken together, our results suggest that the circulating Tfh1 subset plays an important role in the development of anti-HIV antibody responses and contributes to HIV suppression during acute HIV-1 infection. These results have implications for vaccine studies aimed at inducing long-lasting anti-HIV antibody responses.IMPORTANCE The HIV epidemic in southern Africa accounts for almost half of the global HIV burden, with HIV-1 clade C being the predominant strain. It is therefore important to define immune correlates of clade C HIV control that might have implications for vaccine design in this region. T follicular helper (Tfh) cells are critical for the development of HIV-specific antibody responses and could play a role in viral control. Here we showed that the early induction of circulating Tfh1 cells during acute infection correlated positively with the magnitude of p24-specific IgG and was associated with a lower set point viral load. This study highlights a key Tfh cell subset that could limit HIV replication by enhancing antibody generation. This study underscores the importance of circulating Tfh cells in promoting nonneutralizing antibodies during HIV-1 infection.


Assuntos
Formação de Anticorpos , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Imunoglobulina G/imunologia , Células Th1/imunologia , Carga Viral , Doença Aguda , Adulto , Contagem de Linfócito CD4 , Feminino , Anticorpos Anti-HIV/sangue , Infecções por HIV/sangue , Infecções por HIV/patologia , HIV-1/metabolismo , Humanos , Imunoglobulina G/sangue , Masculino , Células Th1/metabolismo , Células Th1/patologia
14.
Lancet HIV ; 5(1): e35-e44, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28978417

RESUMO

BACKGROUND: HIV incidence among young women in sub-Saharan Africa remains high and their inclusion in vaccine and cure efforts is crucial. We aimed to establish a cohort of young women detected during Fiebig stage I acute HIV infection in whom treatment was initiated immediately after diagnosis to advance research in this high-risk group. METHODS: 945 women aged 18-23 years in KwaZulu-Natal, South Africa, who were HIV uninfected and sexually active consented to HIV-1 RNA testing twice a week and biological sampling and risk assessment every 3 months during participation in a 48-96 week life-skills and job-readiness programme. We analysed the effect of immediate combination antiretroviral therapy (ART) on viraemia and immune responses, sexual risk behaviour, and the effect of the socioeconomic intervention. FINDINGS: 42 women were diagnosed with acute HIV infection between Dec 1, 2012, and June 30, 2016, (incidence 8·2 per 100 person-years, 95% CI 5·9-11·1), of whom 36 (86%) were diagnosed in Fiebig stage I infection with a median initial viral load of 2·97 log10 copies per mL (IQR 2·42-3·85). 23 of these 36 women started ART at a median of 1 day (1-1) after detection, which limited the median peak viral load to 4·22 log10 copies per mL (3·27-4·83) and the CD4 nadir to 685 cells per µL (561-802). ART also suppressed viral load (to <20 copies per mL) within a median of 16 days (12-26) and, in 20 (87%) of 23 women, prevented seroconversion, as shown with western blotting. 385 women completed the 48 week socioeconomic intervention, of whom 231 were followed up for 1 year. 202 (87%) of these 231 women were placed in jobs, returned to school, or started a business. INTERPRETATION: Frequent HIV screening combined with a socioeconomic intervention facilitated sampling and risk assessment before and after infection. In addition to detection of acute infection and immediate treatment, we established a cohort optimised for prevention and cure research. FUNDING: Bill & Melinda Gates Foundation, National Institute of Allergy and Infectious Diseases, International AIDS Vaccine Initiative, Wellcome Trust, Howard Hughes Medical Institute.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/diagnóstico , Infecções por HIV/tratamento farmacológico , Feminino , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Masculino , Estudos Prospectivos , Fatores Socioeconômicos , África do Sul , Carga Viral , Adulto Jovem
15.
J Virol ; 91(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28077649

RESUMO

Functional analysis of T-cell responses in HIV-infected individuals has indicated that virus-specific CD8+ T cells with superior antiviral efficacy are well represented in HIV-1 controllers but are rare or absent in HIV-1 progressors. To define the role of individual T-cell receptor (TCR) clonotypes in differential antiviral CD8+ T-cell function, we performed detailed functional and mass cytometric cluster analysis of multiple CD8+ T-cell clones recognizing the identical HLA-B*2705-restricted HIV-1 epitope KK10 (KRWIILGLNK). Effective and ineffective CD8+ T-cell clones segregated based on responses to HIV-1-infected and peptide-loaded target cells. Following cognate peptide stimulation, effective HIV-specific clones displayed significantly more rapid TCR signal propagation, more efficient initial lytic granule release, and more sustained nonlytic cytokine and chemokine secretion than ineffective clones. To evaluate the TCR clonotype contribution to CD8+ T-cell function, we cloned the TCR α and ß chain genes from one effective and two ineffective CD8+ T-cell clones from an elite controller into TCR-expressing lentivectors. We show that Jurkat/MA cells and primary CD8+ T cells transduced with lentivirus expressing TCR from one of the ineffective clones exhibited a level of activation by cognate peptide and inhibition of in vitro HIV-1 infection, respectively, that were comparable to those of the effective clonotype. Taken together, these data suggest that the potent antiviral capacity of some HIV-specific CD8+ T cells is a consequence of factors in addition to TCR sequence that modulate functionality and contribute to the increased antiviral capacity of HIV-specific CD8+ T cells in elite controllers to inhibit HIV infection.IMPORTANCE The greater ex vivo antiviral inhibitory activity of CD8+ T cells from elite controllers than from HIV-1 progressors supports the crucial role of effective HIV-specific CD8+ T cells in controlling HIV-1 replication. The contribution of TCR clonotype to inhibitory potency was investigated by delineating the responsiveness of effective and ineffective CD8+ T-cell clones recognizing the identical HLA-B*2705-restricted HIV-1 Gag-derived peptide, KK10 (KRWIILGLNK). KK10-stimulated "effective" CD8+ T-cell clones displayed significantly more rapid TCR signal propagation, more efficient initial lytic granule release, and more sustained cytokine and chemokine secretion than "ineffective" CD8+ T-cell clones. However, TCRs cloned from an effective and one of two ineffective clones conferred upon primary CD8+ T cells the equivalent potent capacity to inhibit HIV-1 infection. Taken together, these data suggest that other factors aside from intrinsic TCR-peptide-major histocompatibility complex (TCR-peptide-MHC) reactivity can contribute to the potent antiviral capacity of some HIV-specific CD8+ T-cell clones.


Assuntos
HIV-1/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/virologia , Células Cultivadas , Clonagem Molecular , Epitopos de Linfócito T/imunologia , Expressão Gênica , Humanos , Receptores de Antígenos de Linfócitos T/genética
16.
J Virol ; 91(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077659

RESUMO

Immune control of viral infections is heavily dependent on helper CD4+ T cell function. However, the understanding of the contribution of HIV-specific CD4+ T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4+ T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4+ T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4+ T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4+ T cells in HIV controllers than progressors (P = 0.0001), and these expanded Gag-specific CD4+ T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control (r = -0.5, P = 0.02). These data identify an association between HIV-specific CD4+ T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4+ T cell responses in natural infections.IMPORTANCE Increasing evidence suggests that virus-specific CD4+ T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4+ T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of HIV infections worldwide. Understanding the contribution of HIV-specific CD4+ T cell responses in clade C infection is particularly important for developing vaccines that would be efficacious in sub-Saharan Africa, where clade C infection is dominant. Here, we employed MHC class II tetramers designed to immunodominant Gag epitopes and used them to characterize CD4+ T cell responses in HIV-1 clade C infection. Our results demonstrate an association between the frequency of HIV-specific CD4+ T cell responses targeting an immunodominant DRB1*11-Gag41 complex and HIV control, highlighting the important contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infections.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Antígenos de Histocompatibilidade Classe II/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Alelos , Linfócitos T CD4-Positivos/virologia , Progressão da Doença , Resistência à Doença , Feminino , Frequência do Gene , Infecções por HIV/patologia , Infecções por HIV/virologia , Humanos , Masculino , Carga Viral
17.
J Virol ; 90(15): 6818-6831, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27194762

RESUMO

UNLABELLED: The mechanisms of viral control and loss of viral control in chronically infected individuals with or without protective HLA class I alleles are not fully understood. We therefore characterized longitudinally the immunological and virological features that may explain divergence in disease outcome in 70 HIV-1 C-clade-infected antiretroviral therapy (ART)-naive South African adults, 35 of whom possessed protective HLA class I alleles. We demonstrate that, over 5 years of longitudinal study, 35% of individuals with protective HLA class I alleles lost viral control compared to none of the individuals without protective HLA class I alleles (P = 0.06). Sustained HIV-1 control in patients with protective HLA class I alleles was characteristically related to the breadth of HIV-1 CD8(+) T cell responses against Gag and enhanced ability of CD8(+) T cells to suppress viral replication ex vivo In some cases, loss of virological control was associated with reduction in the total breadth of CD8(+) T cell responses in the absence of differences in HIV-1-specific CD8(+) T cell polyfunctionality or proliferation. In contrast, viremic controllers without protective HLA class I alleles possessed reduced breadth of HIV-1-specific CD8(+) T cell responses characterized by reduced ability to suppress viral replication ex vivo These data suggest that the control of HIV-1 in individuals with protective HLA class I alleles may be driven by broad CD8(+) T cell responses with potent viral inhibitory capacity while control among individuals without protective HLA class I alleles may be more durable and mediated by CD8(+) T cell-independent mechanisms. IMPORTANCE: Host mechanisms of natural HIV-1 control are not fully understood. In a longitudinal study of antiretroviral therapy (ART)-naive individuals, we show that those with protective HLA class I alleles subsequently experienced virologic failure compared to those without protective alleles. Among individuals with protective HLA class I alleles, viremic control was associated with broad CD8(+) T cells that targeted the Gag protein, and CD8(+) T cells from these individuals exhibited superior virus inhibition capacity. In individuals without protective HLA class I alleles, HIV-1-specific CD8(+) T cell responses were narrow and poorly inhibited virus replication. These results suggest that broad, highly functional cytotoxic T cells (cytotoxic T lymphocytes [CTLs]) against the HIV-1 Gag protein are associated with control among those with protective HLA class I alleles and that loss of these responses eventually leads to viremia. A subset of individuals appears to have alternative, non-CTL mechanisms of viral control. These controllers may hold the key to an effective HIV vaccine.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Linfócitos T Citotóxicos/imunologia , Viremia/imunologia , Adulto , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/virologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Estudos Longitudinais , Carga Viral , Viremia/tratamento farmacológico , Replicação Viral
18.
Immunity ; 43(3): 591-604, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26362266

RESUMO

CD8(+) T cells contribute to the control of HIV, but it is not clear whether initial immune responses modulate the viral set point. We screened high-risk uninfected women twice a week for plasma HIV RNA and identified 12 hyperacute infections. Onset of viremia elicited a massive HIV-specific CD8(+) T cell response, with limited bystander activation of non-HIV memory CD8(+) T cells. HIV-specific CD8(+) T cells secreted little interferon-γ, underwent rapid apoptosis, and failed to upregulate the interleukin-7 receptor, known to be important for T cell survival. The rapidity to peak CD8(+) T cell activation and the absolute magnitude of activation induced by the exponential rise in viremia were inversely correlated with set point viremia. These data indicate that rapid, high magnitude HIV-induced CD8(+) T cell responses are crucial for subsequent immune control of acute infection, which has important implications for HIV vaccine design.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , Ativação Linfocitária/imunologia , Carga Viral/imunologia , Adolescente , Apoptose/imunologia , Contagem de Linfócito CD4 , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Feminino , Citometria de Fluxo , Infecções por HIV/sangue , Infecções por HIV/diagnóstico , Infecções por HIV/virologia , HIV-1/genética , HIV-1/imunologia , HIV-1/fisiologia , Humanos , Cinética , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Viral/genética , RNA Viral/imunologia , Fatores de Tempo , Viremia/diagnóstico , Viremia/imunologia , Adulto Jovem , Receptor fas/imunologia , Receptor fas/metabolismo
19.
J Virol ; 89(21): 10735-47, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26269189

RESUMO

UNLABELLED: Previous studies have shown that elite controllers with minimal effector T cell responses harbor a low-frequency, readily expandable, highly functional, and broadly directed memory population. Here, we interrogated the in vivo relevance of this cell population by investigating whether the breadth of expandable memory responses is associated with the magnitude of residual viremia in individuals achieving durable suppression of HIV infection. HIV-specific memory CD8(+) T cells were expanded by using autologous epitopic and variant peptides. Viral load was measured by an ultrasensitive single-copy PCR assay. Following expansion, controllers showed a greater increase in the overall breadth of Gag responses than did untreated progressors (P = 0.01) as well as treated progressors (P = 0.0003). Nef- and Env-specific memory cells expanded poorly for all groups, and their expanded breadths were indistinguishable among groups (P = 0.9 for Nef as determined by a Kruskal-Wallis test; P = 0.6 for Env as determined by a Kruskal-Wallis test). More importantly, we show that the breadth of expandable, previously undetectable Gag-specific responses was inversely correlated with residual viral load (r = -0.6; P = 0.009). Together, these data reveal a direct link between the abundance of Gag-specific expandable memory responses and prolonged maintenance of low-level viremia. Our studies highlight a CD8(+) T cell feature that would be desirable in a vaccine-induced T cell response. IMPORTANCE: Many studies have shown that the rare ability of some individuals to control HIV infection in the absence of antiretroviral therapy appears to be heavily dependent upon special HIV-specific killer T lymphocytes that are able to inhibit viral replication. The identification of key features of these immune cells has the potential to inform rational HIV vaccine design. This study shows that a special subset of killer lymphocytes, known as central memory CD8(+) T lymphocytes, is at least partially involved in the durable control of HIV replication. HIV controllers maintain a large proportion of Gag-specific expandable memory CD8(+) T cells involved in ongoing viral suppression. These data suggest that induction of this cell subset by future HIV vaccines may be important for narrowing possible routes of rapid escape from vaccine-induced CD8(+) T cell responses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , Memória Imunológica , ELISPOT , Citometria de Fluxo , Produtos do Gene gag/metabolismo , Humanos , Massachusetts , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase em Tempo Real , Estatísticas não Paramétricas , Carga Viral
20.
AIDS ; 29(1): 23-33, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25387316

RESUMO

OBJECTIVE: We characterized protein-specific CD8 T-cell immunodominance patterns during the first year of HIV-1 infection, and their impact on viral evolution and immune control. METHODS: We analyzed CD8 T-cell responses to the full HIV-1 proteome during the first year of infection in 18 antiretroviral-naïve individuals with acute HIV-1 subtype C infection, all identified prior to seroconversion. Ex-vivo and cultured interferon-γ ELISPOT assays were performed and viruses from plasma were sequenced within defined CTL Gag epitopes. RESULTS: Nef-specific CD8 T-cell responses were dominant during the first 4 weeks after infection and made up 40% of the total responses at this time; yet, by 1 year, responses against this region had declined and Gag responses made up to 47% of all T-cell responses measured. An inverse correlation between the breadth of Gag-specific responses and viral load set point was evident at 26 weeks after infection (P = 0.0081, r = -0.60) and beyond. An inverse correlation between the number of persistent responses targeting Gag and viral set point was also identified (P = 0.01, r = -0.58). Gag-specific responses detectable by the cultured ELISPOT assay correlated negatively with viral load set point (P = 0.0013, r = -0.91). Sequence evolution in targeted and nontargeted Gag epitopes in this cohort was infrequent. CONCLUSIONS: These data underscore the importance of HIV-specific CD8 T-cell responses, particularly to the Gag protein, in the maintenance of low viral load levels during primary infection, and show that these responses are initially poorly elicited by natural infection. These data have implications for vaccine design strategies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Epitopos Imunodominantes/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Adulto , ELISPOT , Feminino , Humanos , Interferon gama/química , Masculino , Análise de Sequência de RNA , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA