Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
bioRxiv ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38948766

RESUMO

Bacteroides fragilis is a prominent member of the human gut microbiota, playing crucial roles in maintaining gut homeostasis and host health. Although it primarily functions as a beneficial commensal, B. fragilis can become pathogenic. To determine the genetic basis of its duality, we conducted a comparative genomic analysis of 813 B. fragilis strains, representing both commensal and pathogenic origins. Our findings reveal that pathogenic strains emerge across diverse phylogenetic lineages, due in part to rapid gene exchange and the adaptability of the accessory genome. We identified 16 phylogenetic groups, differentiated by genes associated with capsule composition, interspecies competition, and host interactions. A microbial genome-wide association study identified 44 genes linked to extra-intestinal survival and pathogenicity. These findings reveal how genomic diversity within commensal species can lead to the emergence of pathogenic traits, broadening our understanding of microbial evolution in the gut.

2.
Sci Adv ; 10(29): eado2623, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39018398

RESUMO

Diatoms are major players in the global carbon cycle, and their metabolism is affected by ocean conditions. Understanding the impact of changing inorganic nutrients in the oceans on diatoms is crucial, given the changes in global carbon dioxide levels. Here, we present a genome-scale metabolic model (iMK1961) for Cylindrotheca closterium, an in silico resource to understand uncharacterized metabolic functions in this ubiquitous diatom. iMK1961 represents the largest diatom metabolic model to date, comprising 1961 open reading frames and 6718 reactions. With iMK1961, we identified the metabolic response signature to cope with drastic changes in growth conditions. Comparing model predictions with Tara Oceans transcriptomics data unraveled C. closterium's metabolism in situ. Unexpectedly, the diatom only grows photoautotrophically in 21% of the sunlit ocean samples, while the majority of the samples indicate a mixotrophic (71%) or, in some cases, even a heterotrophic (8%) lifestyle in the light. Our findings highlight C. closterium's metabolic flexibility and its potential role in global carbon cycling.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Diatomáceas/genética , Diatomáceas/crescimento & desenvolvimento , Ciclo do Carbono , Oceanos e Mares , Água do Mar , Modelos Biológicos , Transcriptoma , Redes e Vias Metabólicas
3.
NAR Mol Med ; 1(1): ugad001, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38994440

RESUMO

Traditional antiviral therapies often have limited effectiveness due to toxicity and the emergence of drug resistance. Host-based antivirals are an alternative, but can cause nonspecific effects. Recent evidence shows that virus-infected cells can be selectively eliminated by targeting synthetic lethal (SL) partners of proteins disrupted by viral infection. Thus, we hypothesized that genes depleted in CRISPR knockout (KO) screens of virus-infected cells may be enriched in SL partners of proteins altered by infection. To investigate this, we established a computational pipeline predicting antiviral SL drug targets. First, we identified SARS-CoV-2-induced changes in gene products via a large compendium of omics data. Second, we identified SL partners for each altered gene product. Last, we screened CRISPR KO data for SL partners required for cell viability in infected cells. Despite differences in virus-induced alterations detected by various omics data, they share many predicted SL targets, with significant enrichment in CRISPR KO-depleted datasets. Our comparison of SARS-CoV-2 and influenza infection data revealed potential broad-spectrum, host-based antiviral SL targets. This suggests that CRISPR KO data are replete with common antiviral targets due to their SL relationship with virus-altered states and that such targets can be revealed from analysis of omics datasets and SL predictions.

4.
Bioinformatics ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001800

RESUMO

SUMMARY: perox-per-cell automates cumbersome, image-based data collection tasks often encountered in peroxisome research. The software processes microscopy images to quantify peroxisome features in yeast cells. It uses off-the-shelf image processing tools to automatically segment cells and peroxisomes and then outputs quantitative metrics including peroxisome counts per cell and spatial areas. In validation tests, we found that perox-per-cell output agrees well with manually quantified peroxisomal counts and cell instances, thereby enabling high-throughput quantification of peroxisomal characteristics. AVAILABILITY AND IMPLEMENTATION: The software is coded in Python. Compiled executables and source code are available at https://github.com/AitchisonLab/perox-per-cell. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

5.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38645222

RESUMO

perox-per-cell automates cumbersome, image-based data collection tasks often encountered in peroxisome research. The software processes microscopy images to quantify peroxisome features in yeast cells. It uses off-the-shelf image processing tools to automatically segment cells and peroxisomes and then outputs quantitative metrics including peroxisome counts per cell and spatial areas. In validation tests, we found that perox-per-cell output agrees well with manually-quantified peroxisomal counts and cell instances, thereby enabling high-throughput quantification of peroxisomal characteristics. The software is available at https://github.com/AitchisonLab/perox-per-cell.

6.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659794

RESUMO

Pulmonary Mycobacterium tuberculosis (Mtb) infection results in highly heterogeneous lesions ranging from granulomas with central necrosis to those primarily comprised of alveolitis. While alveolitis has been associated with prior immunity in human post-mortem studies, the drivers of these distinct pathologic outcomes are poorly understood. Here, we show that these divergent lesion structures can be modeled in C3HeB/FeJ mice and are regulated by prior immunity. Using quantitative imaging, scRNAseq, and flow cytometry, we demonstrate that Mtb infection in the absence of prior immunity elicits dysregulated neutrophil recruitment and necrotic granulomas. In contrast, prior immunity induces rapid recruitment and activation of T cells, local macrophage activation, and diminished late neutrophil responses. Depletion studies at distinct infection stages demonstrated that neutrophils are required for early necrosis initiation and necrosis propagation at chronic stages, whereas early CD4 T cell responses prevent neutrophil feedforward circuits and necrosis. Together, these studies reveal fundamental determinants of tuberculosis lesion structure and pathogenesis, which have important implications for new strategies to prevent or treat tuberculosis.

7.
Front Cell Infect Microbiol ; 14: 1264525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585651

RESUMO

Introduction: Dengue is an arboviral disease causing severe illness in over 500,000 people each year. Currently, there is no way to constrain dengue in the clinic. Host kinase regulators of dengue virus (DENV) infection have the potential to be disrupted by existing therapeutics to prevent infection and/or disease progression. Methods: To evaluate kinase regulation of DENV infection, we performed kinase regression (KiR), a machine learning approach that predicts kinase regulators of infection using existing drug-target information and a small drug screen. We infected hepatocytes with DENV in vitro in the presence of a panel of 38 kinase inhibitors then quantified the effect of each inhibitor on infection rate. We employed elastic net regularization on these data to obtain predictions of which of 291 kinases are regulating DENV infection. Results: Thirty-six kinases were predicted to have a functional role. Intriguingly, seven of the predicted kinases - EPH receptor A4 (EPHA4), EPH receptor B3 (EPHB3), EPH receptor B4 (EPHB4), erb-b2 receptor tyrosine kinase 2 (ERBB2), fibroblast growth factor receptor 2 (FGFR2), Insulin like growth factor 1 receptor (IGF1R), and ret proto-oncogene (RET) - belong to the receptor tyrosine kinase (RTK) family, which are already therapeutic targets in the clinic. We demonstrate that predicted RTKs are expressed at higher levels in DENV infected cells. Knockdown of EPHB4, ERBB2, FGFR2, or IGF1R reduces DENV infection in hepatocytes. Finally, we observe differential temporal induction of ERBB2 and IGF1R following DENV infection, highlighting their unique roles in regulating DENV. Discussion: Collectively, our findings underscore the significance of multiple RTKs in DENV infection and advocate further exploration of RTK-oriented interventions against dengue.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/fisiologia , Receptor EphA1 , Hepatócitos/metabolismo , Tirosina , Replicação Viral
8.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365248

RESUMO

The microbiome of the built environment comprises bacterial, archaeal, fungal, and viral communities associated with human-made structures. Even though most of these microbes are benign, antibiotic-resistant pathogens can colonize and emerge indoors, creating infection risk through surface transmission or inhalation. Several studies have catalogued the microbial composition and ecology in different built environment types. These have informed in vitro studies that seek to replicate the physicochemical features that promote pathogenic survival and transmission, ultimately facilitating the development and validation of intervention techniques used to reduce pathogen accumulation. Such interventions include using Bacillus-based cleaning products on surfaces or integrating bacilli into printable materials. Though this work is in its infancy, early research suggests the potential to use microbial biocontrol to reduce hospital- and home-acquired multidrug-resistant infections. Although these techniques hold promise, there is an urgent need to better understand the microbial ecology of built environments and to determine how these biocontrol solutions alter species interactions. This review covers our current understanding of microbial ecology of the built environment and proposes strategies to translate that knowledge into effective biocontrol of antibiotic-resistant pathogens.


Assuntos
Bacillus , Microbiota , Humanos , Bactérias/genética , Antibacterianos , Ambiente Construído
9.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370655

RESUMO

We developed an R codebase that uses a publicly-available compendium of transcriptomes from yeast single-gene deletion strains - the Deleteome - to predict gene function. Primarily, the codebase provides functions for identifying similarities between the transcriptomic signatures of deletion strains, thereby associating genes of interest with others that may be functionally related. We describe how our tool predicted a novel relationship between the yeast nucleoporin Nup170 and the Ctf18-RFC complex, which was confirmed experimentally, revealing a previously unknown link between nuclear pore complexes and the DNA replication machinery. We also discuss how our strategy for quantifying similarity between deletion strains differs from other approaches and why it has the potential to identify functional relationships that similar approaches may not. Deleteome-Tools is implemented in R and is freely available at https://github.com/AitchisonLab/Deleteome-Tools .

10.
PLoS Comput Biol ; 19(10): e1011594, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37903176

RESUMO

Bacteroides fragilis is a universal member of the dominant commensal gut phylum Bacteroidetes. Its fermentation products and abundance have been linked to obesity, inflammatory bowel disease, and other disorders through its effects on host metabolic regulation and the immune system. As of yet, there has been no curated systems-level characterization of B. fragilis' metabolism that provides a comprehensive analysis of the link between human diet and B. fragilis' metabolic products. To address this, we developed a genome-scale metabolic model of B. fragilis strain 638R. The model iMN674 contains 1,634 reactions, 1,362 metabolites, three compartments, and reflects the strain's ability to utilize 142 metabolites. Predictions made with this model include its growth rate and efficiency on these substrates, the amounts of each fermentation product it produces under different conditions, and gene essentiality for each biomass component. The model highlights and resolves gaps in knowledge of B. fragilis' carbohydrate metabolism and its corresponding transport proteins. This high quality model provides the basis for rational prediction of B. fragilis' metabolic interactions with its environment and its host.


Assuntos
Bacteroides fragilis , Proteínas de Transporte , Humanos , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Proteínas de Transporte/metabolismo
11.
bioRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645861

RESUMO

Traditional antiviral therapies often have limited effectiveness due to toxicity and development of drug resistance. Host-based antivirals, while an alternative, may lead to non-specific effects. Recent evidence shows that virus-infected cells can be selectively eliminated by targeting synthetic lethal (SL) partners of proteins disrupted by viral infection. Thus, we hypothesized that genes depleted in CRISPR KO screens of virus-infected cells may be enriched in SL partners of proteins altered by infection. To investigate this, we established a computational pipeline predicting SL drug targets of viral infections. First, we identified SARS-CoV-2-induced changes in gene products via a large compendium of omics data. Second, we identified SL partners for each altered gene product. Last, we screened CRISPR KO data for SL partners required for cell viability in infected cells. Despite differences in virus-induced alterations detected by various omics data, they share many predicted SL targets, with significant enrichment in CRISPR KO-depleted datasets. Comparing data from SARS-CoV-2 and influenza infections, we found possible broad-spectrum, host-based antiviral SL targets. This suggests that CRISPR KO data are replete with common antiviral targets due to their SL relationship with virus-altered states and that such targets can be revealed from analysis of omics datasets and SL predictions.

12.
J Cell Biol ; 222(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37358474

RESUMO

The nuclear pore complex (NPC) physically interacts with chromatin and regulates gene expression. The Saccharomyces cerevisiae inner ring nucleoporin Nup170 has been implicated in chromatin organization and the maintenance of gene silencing in subtelomeric regions. To gain insight into how Nup170 regulates this process, we used protein-protein interactions, genetic interactions, and transcriptome correlation analyses to identify the Ctf18-RFC complex, an alternative proliferating cell nuclear antigen (PCNA) loader, as a facilitator of the gene regulatory functions of Nup170. The Ctf18-RFC complex is recruited to a subpopulation of NPCs that lack the nuclear basket proteins Mlp1 and Mlp2. In the absence of Nup170, PCNA levels on DNA are reduced, resulting in the loss of silencing of subtelomeric genes. Increasing PCNA levels on DNA by removing Elg1, which is required for PCNA unloading, rescues subtelomeric silencing defects in nup170Δ. The NPC, therefore, mediates subtelomeric gene silencing by regulating PCNA levels on DNA.


Assuntos
Cromatina , Inativação Gênica , Poro Nuclear , Antígeno Nuclear de Célula em Proliferação , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Telômero , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cromatina/genética , Cromatina/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/genética , Telômero/metabolismo , DNA Fúngico/metabolismo
13.
PLoS Pathog ; 19(5): e1011051, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37195999

RESUMO

Understanding immune mechanisms that mediate malaria protection is critical for improving vaccine development. Vaccination with radiation-attenuated Plasmodium falciparum sporozoites (PfRAS) induces high level of sterilizing immunity against malaria and serves as a valuable tool for the study of protective mechanisms. To identify vaccine-induced and protection-associated responses during malarial infection, we performed transcriptome profiling of whole blood and in-depth cellular profiling of PBMCs from volunteers who received either PfRAS or noninfectious mosquito bites, followed by controlled human malaria infection (CHMI) challenge. In-depth single-cell profiling of cell subsets that respond to CHMI in mock-vaccinated individuals showed a predominantly inflammatory transcriptome response. Whole blood transcriptome analysis revealed that gene sets associated with type I and II interferon and NK cell responses were increased in prior to CHMI while T and B cell signatures were decreased as early as one day following CHMI in protected vaccinees. In contrast, non-protected vaccinees and mock-vaccinated individuals exhibited shared transcriptome changes after CHMI characterized by decreased innate cell signatures and inflammatory responses. Additionally, immunophenotyping data showed different induction profiles of vδ2+ γδ T cells, CD56+ CD8+ T effector memory (Tem) cells, and non-classical monocytes between protected vaccinees and individuals developing blood-stage parasitemia, following treatment and resolution of infection. Our data provide key insights in understanding immune mechanistic pathways of PfRAS-induced protection and infective CHMI. We demonstrate that vaccine-induced immune response is heterogenous between protected and non-protected vaccinees and that inducted-malaria protection by PfRAS is associated with early and rapid changes in interferon, NK cell and adaptive immune responses. Trial Registration: ClinicalTrials.gov NCT01994525.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Humanos , Animais , Malária Falciparum/prevenção & controle , Plasmodium falciparum/genética , Vacinação , Interferons , Imunidade , Esporozoítos
14.
mSystems ; 7(6): e0044722, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36317886

RESUMO

Microbiome studies have the common goal of determining which microbial taxa are present, respond to specific conditions, or promote phenotypic changes in the host. Most of these studies rely on relative abundance measurements to drive conclusions. Inherent limitations of relative values are the inability to determine whether an individual taxon is more or less abundant and the magnitude of this change between the two samples. These limitations can be overcome by using absolute abundance quantifications, which can allow for a more complete understanding of community dynamics by measuring variations in total microbial loads. Obtaining absolute abundance measurements is still technically challenging. Here, we developed synthetic DNA (synDNA) spike-ins that enable precise and cost-effective absolute quantification of microbiome data by adding defined amounts of synDNAs to the samples. We designed 10 synDNAs with the following features: 2,000-bp length, variable GC content (26, 36, 46, 56, or 66% GC), and negligible identity to sequences found in the NCBI database. Dilution pools were generated by mixing the 10 synDNAs at different concentrations. Shotgun metagenomic sequencing showed that the pools of synDNAs with different percentages of GC efficiently reproduced the serial dilution, showing high correlation (r = 0.96; R2 ≥ 0.94) and significance (P < 0.01). Furthermore, we demonstrated that the synDNAs can be used as DNA spike-ins to generate linear models and predict with high accuracy the absolute number of bacterial cells in complex microbial communities. IMPORTANCE The synDNAs designed in this study enable accurate and reproducible measurements of absolute amount and fold changes of bacterial species in complex microbial communities. The method proposed here is versatile and promising as it can be applied to bacterial communities or genomic features like genes and operons, in addition to being easily adaptable by other research groups at a low cost. We also made the synDNAs' sequences and the plasmids available to encourage future application of the proposed method in the study of microbial communities.


Assuntos
Metagenoma , Microbiota , Metagenoma/genética , Microbiota/genética , Bactérias/genética , Plasmídeos , DNA
15.
J Cell Biol ; 221(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36305789

RESUMO

Viruses co-opt host proteins to carry out their lifecycle. Repurposed host proteins may thus become functionally compromised; a situation analogous to a loss-of-function mutation. We term such host proteins as viral-induced hypomorphs. Cells bearing cancer driver loss-of-function mutations have successfully been targeted with drugs perturbing proteins encoded by the synthetic lethal (SL) partners of cancer-specific mutations. Similarly, SL interactions of viral-induced hypomorphs can potentially be targeted as host-based antiviral therapeutics. Here, we use GBF1, which supports the infection of many RNA viruses, as a proof-of-concept. GBF1 becomes a hypomorph upon interaction with the poliovirus protein 3A. Screening for SL partners of GBF1 revealed ARF1 as the top hit, disruption of which selectively killed cells that synthesize 3A alone or in the context of a poliovirus replicon. Thus, viral protein interactions can induce hypomorphs that render host cells selectively vulnerable to perturbations that leave uninfected cells otherwise unscathed. Exploiting viral-induced vulnerabilities could lead to broad-spectrum antivirals for many viruses, including SARS-CoV-2.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Poliovirus , Proteínas do Core Viral , Humanos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mutações Sintéticas Letais , Replicação Viral , Regulação Viral da Expressão Gênica , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo , Interações Hospedeiro-Patógeno
16.
Nat Commun ; 13(1): 4630, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941112

RESUMO

Liver damage due to chronic alcohol use is among the most prevalent liver diseases. Alcohol consumption frequency is a strong factor of microbiota variance. Here we use isotope labeled [1-13C] ethanol, metagenomics, and metatranscriptomics in ethanol-feeding and intragastric mouse models to investigate the metabolic impacts of alcohol consumption on the gut microbiota. First, we show that although stable isotope labeled [1-13C] ethanol contributes to fatty acid pools in the liver, plasma, and cecum contents of mice, there is no evidence of ethanol metabolism by gut microbiota ex vivo under anaerobic conditions. Next, we observe through metatranscriptomics that the gut microbiota responds to ethanol-feeding by activating acetate dissimilation, not by metabolizing ethanol directly. We demonstrate that blood acetate concentrations are elevated during ethanol consumption. Finally, by increasing systemic acetate levels with glyceryl triacetate supplementation, we do not observe any impact on liver disease, but do induce similar gut microbiota alterations as chronic ethanol-feeding in mice. Our results show that ethanol is not directly metabolized by the gut microbiota, and changes in the gut microbiota linked to ethanol are a side effect of elevated acetate levels. De-trending for these acetate effects may be critical for understanding gut microbiota changes that cause alcohol-related liver disease.


Assuntos
Microbioma Gastrointestinal , Hepatopatias , Acetatos/farmacologia , Consumo de Bebidas Alcoólicas/efeitos adversos , Animais , Etanol/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
17.
Front Physiol ; 13: 820683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283794

RESUMO

Semantic annotation is a crucial step to assure reusability and reproducibility of biosimulation models in biology and physiology. For this purpose, the COmputational Modeling in BIology NEtwork (COMBINE) community recommends the use of the Resource Description Framework (RDF). This grounding in RDF provides the flexibility to enable searching for entities within models (e.g., variables, equations, or entire models) by utilizing the RDF query language SPARQL. However, the rigidity and complexity of the SPARQL syntax and the nature of the tree-like structure of semantic annotations, are challenging for users. Therefore, we propose NLIMED, an interface that converts natural language queries into SPARQL. We use this interface to query and discover model entities from repositories of biosimulation models. NLIMED works with the Physiome Model Repository (PMR) and the BioModels database and potentially other repositories annotated using RDF. Natural language queries are first "chunked" into phrases and annotated against ontology classes and predicates utilizing different natural language processing tools. Then, the ontology classes and predicates are composed as SPARQL and finally ranked using our SPARQL Composer and our indexing system. We demonstrate that NLIMED's approach for chunking and annotating queries is more effective than the NCBO Annotator for identifying relevant ontology classes in natural language queries.Comparison of NLIMED's behavior against historical query records in the PMR shows that it can adapt appropriately to queries associated with well-annotated models.

18.
PLoS Pathog ; 18(2): e1010282, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108339

RESUMO

Immunization with radiation-attenuated sporozoites (RAS) can confer sterilizing protection against malaria, although the mechanisms behind this protection are incompletely understood. We performed a systems biology analysis of samples from the Immunization by Mosquito with Radiation Attenuated Sporozoites (IMRAS) trial, which comprised P. falciparum RAS-immunized (PfRAS), malaria-naive participants whose protection from malaria infection was subsequently assessed by controlled human malaria infection (CHMI). Blood samples collected after initial PfRAS immunization were analyzed to compare immune responses between protected and non-protected volunteers leveraging integrative analysis of whole blood RNA-seq, high parameter flow cytometry, and single cell CITEseq of PBMCs. This analysis revealed differences in early innate immune responses indicating divergent paths associated with protection. In particular, elevated levels of inflammatory responses early after the initial immunization were detrimental for the development of protective adaptive immunity. Specifically, non-classical monocytes and early type I interferon responses induced within 1 day of PfRAS vaccination correlated with impaired immunity. Non-protected individuals also showed an increase in Th2 polarized T cell responses whereas we observed a trend towards increased Th1 and T-bet+ CD8 T cell responses in protected individuals. Temporal differences in genes associated with natural killer cells suggest an important role in immune regulation by these cells. These findings give insight into the immune responses that confer protection against malaria and may guide further malaria vaccine development. Trial registration: ClinicalTrials.gov NCT01994525.


Assuntos
Imunidade , Inflamação , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Esporozoítos/imunologia , Adulto , Animais , Anopheles/parasitologia , Feminino , Humanos , Imunização/métodos , Mordeduras e Picadas de Insetos/imunologia , Malária Falciparum/parasitologia , Masculino , Mosquitos Vetores/parasitologia , Linfócitos T/imunologia , Vacinação/métodos , Vacinas Atenuadas/imunologia
19.
NPJ Vaccines ; 7(1): 5, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031601

RESUMO

Identifying preimmunization biological characteristics that promote an effective vaccine response offers opportunities for illuminating the critical immunological mechanisms that confer vaccine-induced protection, for developing adjuvant strategies, and for tailoring vaccination regimens to individuals or groups. In the context of malaria vaccine research, studying preimmunization correlates of protection can help address the need for a widely effective malaria vaccine, which remains elusive. In this study, common preimmunization correlates of protection were identified using transcriptomic data from four independent, heterogeneous malaria vaccine trials in adults. Systems-based analyses showed that a moderately elevated inflammatory state prior to immunization was associated with protection against malaria challenge. Functional profiling of protection-associated genes revealed the importance of several inflammatory pathways, including TLR signaling. These findings, which echo previous studies that associated enhanced preimmunization inflammation with protection, illuminate common baseline characteristics that set the stage for an effective vaccine response across diverse malaria vaccine strategies in adults.

20.
Front Immunol ; 13: 1042741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591224

RESUMO

Background: Identifying immune processes required for liver-stage sterilizing immunity to malaria remains an open problem. The IMRAS trial comprised 5x immunizations with radiation-attenuated sporozoites resulting in 55% protection from subsequent challenge. Methods: To identify correlates of vaccination and protection, we performed detailed systems immunology longitudinal profiling of the entire trial time course including whole blood transcriptomics, detailed PBMC cell phenotyping and serum antigen array profiling of 11 IMRAS radiation-attenuated sporozoite (RAS) vaccinees at up to 21 timepoints each. Results: RAS vaccination induced serum antibody responses to CSP, TRAP, and AMA1 in all vaccinees. We observed large numbers of differentially expressed genes associated with vaccination response and protection, with distinctly differing transcriptome responses elicited after each immunization. These included inflammatory and proliferative responses, as well as increased abundance of monocyte and DC subsets after each immunization. Increases in Vδ2 γδ; T cells and MAIT cells were observed in response to immunization over the course of study, and CD1c+ CD40+ DC abundance was significantly associated with protection. Interferon responses strongly differed between protected and non-protected individuals with high interferon responses after the 1st immunization, but not the 2nd-5th. Blood transcriptional interferon responses were correlated with abundances of different circulating classical and non-classical monocyte populations. Conclusions: This study has revealed multiple coordinated immunological processes induced by vaccination and associated with protection. Our work represents the most detailed immunological profiling of a RAS vaccine trial performed to date and will guide the design and interpretation of future malaria vaccine trials.


Assuntos
Malária , Esporozoítos , Animais , Humanos , Linfócitos T CD8-Positivos , Imunidade , Interferons , Leucócitos Mononucleares , Malária/prevenção & controle , Vacinação/métodos , Ensaios Clínicos como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA