Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 12(2): 025005, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28145891

RESUMO

Cryogels are advantageous scaffolds for bone regeneration applications due to their high mechanical stability and macroporous structure. Anatomically, bone is composed of collagen and hydroxyapatite and during remodeling, these structural components are replaced. However, early forms of mineralization include calcium salts which take up to months to be converted to the desired hydroxyapatite form. Thus, it is beneficial to provide a primary source of hydroxyapatite within the scaffold, expediting the process of mineralization during bone regeneration. In this study, chitosan-gelatin (CG) cryogels were incorporated with various forms of hydroxyapatite to evaluate effects on the standard characteristics of cryogels, as well as the potential for increased mineralization. Testing included the comparison of porosity, swelling, mechanical integrity, cellular infiltration, and mineralization potential between all types of cryogels. The addition of bone char to CG cryogels produced scaffolds with appropriate porosity and interconnectivity. Additionally, the bone char cryogels exhibited an adequate swelling potential, suitable mechanical properties, excellent cell attachment, and increased mineralization. These properties support this cryogel for such an application in tissue engineering.


Assuntos
Regeneração Óssea/fisiologia , Substitutos Ósseos/química , Hidroxiapatitas/química , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Calcificação Fisiológica , Linhagem Celular , Quitosana/química , Criogéis , Gelatina/química , Humanos , Teste de Materiais , Engenharia Tecidual/métodos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA