Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Magn Reson Med ; 92(3): 1115-1127, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38730562

RESUMO

PURPOSE: T1 mapping is a widely used quantitative MRI technique, but its tissue-specific values remain inconsistent across protocols, sites, and vendors. The ISMRM Reproducible Research and Quantitative MR study groups jointly launched a challenge to assess the reproducibility of a well-established inversion-recovery T1 mapping technique, using acquisition details from a seminal T1 mapping paper on a standardized phantom and in human brains. METHODS: The challenge used the acquisition protocol from Barral et al. (2010). Researchers collected T1 mapping data on the ISMRM/NIST phantom and/or in human brains. Data submission, pipeline development, and analysis were conducted using open-source platforms. Intersubmission and intrasubmission comparisons were performed. RESULTS: Eighteen submissions (39 phantom and 56 human datasets) on scanners by three MRI vendors were collected at 3 T (except one, at 0.35 T). The mean coefficient of variation was 6.1% for intersubmission phantom measurements, and 2.9% for intrasubmission measurements. For humans, the intersubmission/intrasubmission coefficient of variation was 5.9/3.2% in the genu and 16/6.9% in the cortex. An interactive dashboard for data visualization was also developed: https://rrsg2020.dashboards.neurolibre.org. CONCLUSION: The T1 intersubmission variability was twice as high as the intrasubmission variability in both phantoms and human brains, indicating that the acquisition details in the original paper were insufficient to reproduce a quantitative MRI protocol. This study reports the inherent uncertainty in T1 measures across independent research groups, bringing us one step closer to a practical clinical baseline of T1 variations in vivo.


Assuntos
Encéfalo , Crowdsourcing , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Mapeamento Encefálico/métodos , Masculino , Feminino , Adulto , Algoritmos
2.
Ann Neurol ; 96(2): 247-261, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38771066

RESUMO

OBJECTIVE: Although astrocytic pathology is a pathological hallmark of progressive supranuclear palsy (PSP), its pathophysiological role remains unclear. This study aimed to assess astrocyte reactivity in vivo in patients with PSP. Furthermore, we investigated alterations in brain lactate levels and their relationship with astrocyte reactivity. METHODS: We included 30 patients with PSP-Richardson syndrome and 30 healthy controls; in patients, tau deposition was confirmed through 18F-florzolotau positron emission tomography. Myo-inositol, an astroglial marker, and lactate were quantified in the anterior cingulate cortex through magnetic resonance spectroscopy. We measured plasma biomarkers, including glial fibrillary acidic protein as another astrocytic marker. The anterior cingulate cortex was histologically assessed in postmortem samples of another 3 patients with PSP with comparable disease durations. RESULTS: The levels of myo-inositol and plasma glial fibrillary acidic protein were significantly higher in patients than those in healthy controls (p < 0.05); these increases were significantly associated with PSP rating scale and cognitive function scores (p < 0.05). The lactate level was high in patients, and correlated significantly with high myo-inositol levels. Histological analysis of the anterior cingulate cortex in patients revealed reactive astrocytes, despite mild tau deposition, and no marked synaptic loss. INTERPRETATION: We discovered high levels of astrocyte biomarkers in patients with PSP, suggesting astrocyte reactivity. The association between myo-inositol and lactate levels suggests a link between reactive astrocytes and brain energy metabolism changes. Our results indicate that astrocyte reactivity in the anterior cingulate cortex precedes pronounced tau pathology and neurodegenerative processes in that region, and affects brain function in PSP. ANN NEUROL 2024;96:247-261.


Assuntos
Astrócitos , Proteína Glial Fibrilar Ácida , Giro do Cíngulo , Inositol , Ácido Láctico , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/sangue , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Inositol/metabolismo , Giro do Cíngulo/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/patologia , Biomarcadores/sangue , Proteínas tau/metabolismo , Tomografia por Emissão de Pósitrons
3.
Artigo em Inglês | MEDLINE | ID: mdl-37952692

RESUMO

BACKGROUND: The basal ganglia are strongly connected to the primary motor cortex (M1) and play a crucial role in movement control. Interestingly, several disorders showing abnormal neurotransmitter levels in basal ganglia also present concomitant anomalies in intracortical function within M1. OBJECTIVE/HYPOTHESIS: The main aim of this study was to clarify the relationship between neurotransmitter content in the basal ganglia and intracortical function at M1 in healthy individuals. We hypothesized that neurotransmitter content of the basal ganglia would be significant predictors of M1 intracortical function. METHODS: We combined magnetic resonance spectroscopy (MRS) and transcranial magnetic stimulation (TMS) to test this hypothesis in 20 healthy adults. An extensive TMS battery probing common measures of intracortical, and corticospinal excitability was administered, and GABA and glutamate-glutamine levels were assessed from voxels placed over the basal ganglia and the occipital cortex (control region). RESULTS: Regression models using metabolite concentration as predictor and TMS metrics as outcome measures showed that glutamate level in the basal ganglia significantly predicted short interval intracortical inhibition (SICI) and intracortical facilitation (ICF), while GABA content did not. No model using metabolite measures from the occipital control voxel was significant. CONCLUSIONS: Taken together, these results converge with those obtained in clinical populations and suggest that intracortical circuits in human M1 are associated with the neurotransmitter content of connected but distal subcortical structures crucial for motor function.


Assuntos
Córtex Motor , Adulto , Humanos , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Inibição Neural/fisiologia , Potencial Evocado Motor/fisiologia , Ácido Glutâmico/metabolismo , Estimulação Magnética Transcraniana/métodos , Gânglios da Base/diagnóstico por imagem , Ácido gama-Aminobutírico/metabolismo
4.
Ann Neurol ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37703428

RESUMO

OBJECTIVE: Increasing evidence suggests that reactive astrocytes are associated with Alzheimer's disease (AD). However, its underlying pathogenesis remains unknown. Given the role of astrocytes in energy metabolism, reactive astrocytes may contribute to altered brain energy metabolism. Astrocytes are primarily considered glycolytic cells, suggesting a preference for lactate production. This study aimed to examine alterations in astrocytic activities and their association with brain lactate levels in AD. METHODS: The study included 30 AD and 30 cognitively unimpaired participants. For AD participants, amyloid and tau depositions were confirmed by positron emission tomography using [11 C]PiB and [18 F]florzolotau, respectively. Myo-inositol, an astroglial marker, and lactate in the posterior cingulate cortex were quantified by magnetic resonance spectroscopy. These magnetic resonance spectroscopy metabolites were compared with plasma biomarkers, including glial fibrillary acidic protein as another astrocytic marker, and amyloid and tau positron emission tomography. RESULTS: Myo-inositol and lactate levels were higher in AD patients than in cognitively unimpaired participants (p < 0.05). Myo-inositol levels correlated with lactate levels (r = 0.272, p = 0.047). Myo-inositol and lactate levels were positively associated with the Clinical Dementia Rating sum-of-boxes scores (p < 0.05). Significant correlations were noted between myo-inositol levels and plasma glial fibrillary acidic protein, tau phosphorylated at threonine 181 levels, and amyloid and tau positron emission tomography accumulation in the posterior cingulate cortex (p < 0.05). INTERPRETATION: We found high myo-inositol levels accompanied by increased lactate levels in the posterior cingulate cortex in AD patients, indicating a link between reactive astrocytes and altered brain energy metabolism. Myo-inositol and plasma glial fibrillary acidic protein may reflect similar astrocytic changes as biomarkers of AD. ANN NEUROL 2023.

5.
Magn Reson Med ; 90(4): 1271-1281, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37332203

RESUMO

PURPOSE: Frequency drift correction is an important postprocessing step in MRS that yields improvements in spectral quality and metabolite quantification. Although routinely applied in single-voxel MRS, drift correction is much more challenging in MRSI due to the presence of phase-encoding gradients. Thus, separately acquired navigator scans are normally required for drift estimation. In this work, we demonstrate the use of self-navigating rosette MRSI trajectories combined with time-domain spectral registration to enable retrospective frequency drift corrections without the need for separately acquired navigator echoes. METHODS: A rosette MRSI sequence was implemented to acquire data from the brains of 5 healthy volunteers. FIDs from the center of k-space ( k = 0 $$ k=0 $$ FIDs) were isolated from each shot of the rosette acquisition, and time-domain spectral registration was used to estimate the frequency offset of each k = 0 $$ k=0 $$ FID relative to a reference scan (the first k = 0 $$ k=0 $$ FID in the series). The estimated frequency offsets were then used to apply corrections throughout k $$ k $$ -space. Improvements in spectral quality were assessed before and after drift correction. RESULTS: Spectral registration resulted in significant improvements in signal-to-noise ratio (12.9%) and spectral linewidths (18.5%). Metabolite quantification was performed using LCModel, and the average Cramer-Rao lower bounds uncertainty estimates were reduced by 5.0% for all metabolites, following field drift correction. CONCLUSION: This study demonstrated the use of self-navigating rosette MRSI trajectories to retrospectively correct frequency drift errors in in vivo MRSI data. This correction yields meaningful improvements in spectral quality.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Espectroscopia de Ressonância Magnética/métodos , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Razão Sinal-Ruído , Voluntários Saudáveis , Imageamento por Ressonância Magnética/métodos
6.
Autism Res ; 16(3): 535-542, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36626308

RESUMO

Neurodevelopmental disorders (NDDs) including autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD) are thought to arise in part from the disruption in the excitatory/inhibitory balance of gamma-aminobutyric acid (GABA) and glutamate in the brain. Recent evidence has shown the involvement of the cerebellum in cognition and affect regulation, and cerebellar atypical function or damage is reported frequently in NDDs. Magnetic resonance spectroscopy studies have reported decreases in GABA in cortical brain areas in the NDDs, however, GABA levels in the cerebellum have not been examined. To determine possible group effects, we used a MEGA-PRESS acquisition to investigate GABA+ levels in a cerebellar voxel in 343 individuals (aged 2.5-22 years) with ASD, ADHD, OCD and controls. Using a mixed effects model, we found no significant differences between groups in GABA+ concentration. Our findings suggest that cerebellar GABA+ levels do not differentiate NDD groups.


Assuntos
Cerebelo , Transtornos do Neurodesenvolvimento , Ácido gama-Aminobutírico , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Espectro Autista/epidemiologia , Cerebelo/metabolismo , Ácido gama-Aminobutírico/metabolismo , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Transtorno Obsessivo-Compulsivo/epidemiologia , Estudos de Casos e Controles , Masculino , Feminino , Transtornos do Neurodesenvolvimento/epidemiologia
7.
J Neurol Sci ; 444: 120514, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36473346

RESUMO

Patients with progressive supranuclear palsy (PSP) frequently exhibit apathy but the neuropathological processes leading to this phenotype remain elusive. We aimed to examine the involvement of tau protein depositions, oxidative stress (OS), and neuronal loss in the apathetic manifestation of PSP. Twenty patients with PSP and twenty-three healthy controls were enrolled. Tau depositions and brain volumes were evaluated via positron-emission tomography (PET) using a specific probe, 18F-PM-PBB3, and magnetic resonance imaging, respectively. Glutathione (GSH) levels in the anterior and posterior cingulate cortices were quantified by magnetic resonance spectroscopy. Tau pathologies were observed in the subcortical and cortical structures of the patient brains. The angular gyrus exhibited a positive correlation between tau accumulations and apathy scale (AS). Although PSP cases did not show GSH level alterations compared with healthy controls, GSH levels in posterior cingulate cortex were correlated with AS and tau depositions in the angular gyrus. Marked atrophy was observed in subcortical areas, and gray matter volumes in the inferior frontal gyrus and anterior cingulate cortex were positively correlated with AS but showed no correlation with tau depositions and GSH levels. Path analysis highlighted synergistic contributions of tau pathologies and GSH reductions in the posterior cortex to AS, in parallel with associations of gray matter atrophy in the anterior cortex with AS. Apathetic phenotypes may arise from PET-visible tau aggregation and OS compromising the neural circuit resilience in the posterior cortex, along with neuronal loss, with neither PET-detectable tau pathologies nor OS in the anterior cortex.


Assuntos
Apatia , Paralisia Supranuclear Progressiva , Humanos , Proteínas tau/metabolismo , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/complicações , Encéfalo/patologia , Tomografia por Emissão de Pósitrons/métodos , Estresse Oxidativo
8.
Neurobiol Dis ; 174: 105881, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36202290

RESUMO

Fragile-X syndrome (FXS) and Neurofibromatosis of type 1 (NF-1) are two monogenic disorders sharing neurobehavioral symptoms and pathophysiological mechanisms. Namely, preclinical models of both conditions show overactivity of the mTOR signaling pathway as well as GABAergic alterations. However, despite its potential clinical relevance for these disorders, the GABAergic system has not been systematically studied in humans. In the present study, we used an extensive transcranial magnetic stimulation (TMS) assessment battery in combination with magnetic resonance spectroscopy (MRS) to provide a comprehensive picture of the main inhibitory neurotransmitter system in patients with FXS and NF1. Forty-three participants took part in the TMS session (15 FXS, 10 NF1, 18 controls) and 36 in the MRS session (11 FXS, 14 NF1, 11 controls). Results show that, in comparison to healthy control participants, individuals with FXS and NF1 display lower GABA concentration levels as measured with MRS. TMS result show that FXS patients present increased GABAB-mediated inhibition compared to controls and NF1 patients, and that GABAA-mediated intracortical inhibition was associated with increased excitability specifically in the FXS groups. In line with previous reports, correlational analyses between MRS and TMS measures did not show significant relationships between GABA-related metrics, but several TMS measures correlated with glutamate+glutamine (Glx) levels assessed with MRS. Overall, these results suggest a partial overlap in neurophysiological alterations involving the GABA system in NF1 and FXS, and support the hypothesis that MRS and TMS assess different aspects of the neurotransmitter systems.


Assuntos
Síndrome do Cromossomo X Frágil , Córtex Motor , Neurofibromatose 1 , Humanos , Inibição Neural/fisiologia , Ácido gama-Aminobutírico/metabolismo , Estimulação Magnética Transcraniana , Neurofibromatose 1/metabolismo
9.
Magn Reson Med ; 88(5): 1994-2004, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35775808

RESUMO

PURPOSE: The purpose of this study is to present a cloud-based spectral simulation tool "MRSCloud," which allows MRS users to simulate a vendor-specific and sequence-specific basis set online in a convenient and time-efficient manner. This tool can simulate basis sets for GE, Philips, and Siemens MR scanners, including conventional acquisitions and spectral editing schemes with PRESS and semi-LASER localization at 3 T. METHODS: The MRSCloud tool was built on the spectral simulation functionality in the FID-A software package. We added three extensions to accelerate computation (ie, one-dimensional projection method, coherence pathways filters, and precalculation of propagators). The RF waveforms were generated based on vendors' generic pulse shapes and timings. Simulations were compared within MRSCloud using different numbers of spatial resolution (21 × 21, 41 × 41, and 101 × 101). Simulated metabolite basis functions from MRSCloud were compared with those generated by the generic FID-A and MARSS, and a phantom-acquired basis set from LCModel. Intraclass correlation coefficients were calculated to measure the agreement between individual metabolite basis functions. Statistical analysis was performed using R in RStudio. RESULTS: Simulation time for a full PRESS basis set is approximately 11 min on the server. The interclass correlation coefficients ICCs were at least 0.98 between MRSCloud and FID-A and were at least 0.96 between MRSCloud and MARSS. The interclass correlation coefficients between simulated MRSCloud basis spectra and acquired LCModel basis spectra were lowest for glutamine at 0.68 and highest for N-acetylaspartate at 0.96. CONCLUSIONS: Substantial reductions in runtime have been achieved. High ICC values indicated that the accelerating features are running correctly and produce comparable and accurate basis sets.


Assuntos
Computação em Nuvem , Glutamina , Simulação por Computador , Espectroscopia de Ressonância Magnética/métodos , Imagens de Fantasmas
12.
Brain Commun ; 4(2): fcac072, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35434622

RESUMO

Alzheimer's disease is a progressive neurodegenerative disorder with a decades-long pre-symptomatic phase, substantiating the need for prodromal biomarker development and early intervention. To deconstruct the processes underlying disease progression and identify potential biomarkers, we used neuroimaging techniques with high translational potential to human clinical studies in the TgF344-AD rat model which recapitulates the full spectrum of Alzheimer's neuropathology (progressive amyloid deposition, tauopathy, frank neuronal loss, gliosis, and cognitive dysfunction). We employed longitudinal MRI and magnetic resonance spectroscopy in conjunction with behavioural testing to characterize multiple facets of disease pathology in male and female TgF344-AD rats (n = 26, 14M/12F) relative to wildtype littermates (n = 24, 12M/12F). Testing was performed at 4, 10, 16, and 18 months, covering much of the adult rat lifespan and multiple stages of disease progression. The TgF344-AD model demonstrated impaired spatial reference memory in the Barnes Maze by 4 months of age, followed by neurochemical abnormalities in the hippocampus by 10 months and major structural changes by 16 months. Specifically, TgF344-AD rats displayed increased total choline and lactate, and decreased total creatine, taurine, and N-acetylaspartate to myo-inositol ratio, dentate gyrus hypertrophy, and atrophy in the hippocampus, hypothalamus, and nucleus accumbens. Overall, these findings support the use of MRI and magnetic resonance spectroscopy for the development of non-invasive biomarkers of disease progression, clarify the timing of pathological feature presentation in this model, and contribute to the validation of the TgF344-AD rat as a highly relevant model for pre-clinical Alzheimer's disease research.

13.
NMR Biomed ; 35(7): e4702, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35078266

RESUMO

Edited MRS sequences are widely used for studying γ-aminobutyric acid (GABA) in the human brain. Several algorithms are available for modelling these data, deriving metabolite concentration estimates through peak fitting or a linear combination of basis spectra. The present study compares seven such algorithms, using data obtained in a large multisite study. GABA-edited (GABA+, TE = 68 ms MEGA-PRESS) data from 222 subjects at 20 sites were processed via a standardised pipeline, before modelling with FSL-MRS, Gannet, AMARES, QUEST, LCModel, Osprey and Tarquin, using standardised vendor-specific basis sets (for GE, Philips and Siemens) where appropriate. After referencing metabolite estimates (to water or creatine), systematic differences in scale were observed between datasets acquired on different vendors' hardware, presenting across algorithms. Scale differences across algorithms were also observed. Using the correlation between metabolite estimates and voxel tissue fraction as a benchmark, most algorithms were found to be similarly effective in detecting differences in GABA+. An interclass correlation across all algorithms showed single-rater consistency for GABA+ estimates of around 0.38, indicating moderate agreement. Upon inclusion of a basis set component explicitly modelling the macromolecule signal underlying the observed 3.0 ppm GABA peaks, single-rater consistency improved to 0.44. Correlation between discrete pairs of algorithms varied, and was concerningly weak in some cases. Our findings highlight the need for consensus on appropriate modelling parameters across different algorithms, and for detailed reporting of the parameters adopted in individual studies to ensure reproducibility and meaningful comparison of outcomes between different studies.


Assuntos
Algoritmos , Ácido gama-Aminobutírico , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Prótons por Ressonância Magnética , Reprodutibilidade dos Testes , Ácido gama-Aminobutírico/metabolismo
14.
Neurobiol Aging ; 109: 216-228, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34775212

RESUMO

Animal models are widely used to study the pathophysiology of disease and to evaluate the efficacy of novel interventions, crucial steps towards improving disease outcomes in humans. The Fischer 344 (F344) wildtype rat is a common experimental background strain for transgenic models of disease and is one of the most frequently used models in aging research. Despite frequency of use, characterization of agerelated neuroanatomical change has not been performed in the F344 rat. To this end, we present a comprehensive longitudinal examination of morphometric change in 73 brain regions and at a voxel-wise level during normative aging in vivo in a mixed-sexcohort of F344 rats. We identified the greatest vulnerability to aging within the cortex, caudoputamen, hindbrain, and internal capsule, while the influence of sex was strongest in the caudoputamen, hippocampus, nucleus accumbens, and thalamus, many of which are implicated in memory and motor control circuits frequently affected by aging and neurodegenerative disease. These findings provide a baseline for neuroanatomical changes associated with aging in male and female F344 rats, to which data from transgenic models or other background strains can be compared.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Encéfalo/patologia , Encéfalo/fisiologia , Caracteres Sexuais , Animais , Encéfalo/diagnóstico por imagem , Feminino , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Memória , Modelos Animais , Neuroimagem , Ratos Endogâmicos F344
15.
J Cereb Blood Flow Metab ; 42(1): 197-212, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34515548

RESUMO

To assess if magnetic resonance spectroscopy (MRS)-measured Glutamate (Glu) and GABA reflect excitatory and inhibitory neural activities, respectively, we conducted MRS measurements along with two-photon mesoscopic imaging of calcium signals in excitatory and inhibitory neurons of living, unanesthetized mice. For monitoring stimulus-driven activations of a brain region, MRS signals and mesoscopic neural activities were measured during two consecutive sessions of 15-min prolonged sensory stimulations. In the first session, putative excitatory neuronal activities were increased, while inhibitory neuronal activities remained at the baseline level. In the second half, while excitatory neuronal activities remained elevated, inhibitory neuronal activities were significantly enhanced. We assessed regional neurochemical statuses by measuring MRS signals, which were overall in accordance with the neural activities, and neuronal activities and neurochemical statuses in a mouse model of Dravet syndrome under resting condition. Mesoscopic assessments showed that activities of inhibitory neurons in the cortex were diminished relative to wild-type mice in contrast to spared activities of excitatory neurons. Consistent with these observations, the Dravet model exhibited lower concentrations of GABA than wild-type controls. Collectively, the current investigations demonstrate that MRS-measured Glu and GABA can reflect spontaneous and stimulated activities of neurons producing and releasing these neurotransmitters in an awake condition.


Assuntos
Epilepsias Mioclônicas/metabolismo , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Vigília , Ácido gama-Aminobutírico/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Espectroscopia de Ressonância Magnética , Masculino , Camundongos
16.
Magn Reson Med ; 87(2): 589-596, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34520079

RESUMO

PURPOSE: To investigate the editing-pulse flip angle (FA) dependence of editing efficiency and ultimately to maximize the edited signal of commonly edited MR spectroscopy (MRS) signals, such as gamma-aminobutyric acid (GABA) and lactate. METHODS: Density-matrix simulations were performed for a range of spin systems to find the editing-pulse FA for maximal editing efficiency. Simulations were confirmed by phantom experiments and in vivo measurements in 10 healthy participants using a 3T Philips scanner. Four MEGA-PRESS in vivo measurements targeting GABA+ and lactate were performed, comparing the conventional editing-pulse FA (FA = 180°) to the optimal one suggested by simulations (FA = 210°). RESULTS: Simulations and phantom experiments show that edited GABA and lactate signals are maximal at FA = 210°. Compared to conventional editing (FA = 180°), in vivo signals from GABA+ and lactate signals increase on average by 8.5% and 9.3%, respectively. CONCLUSION: Increasing the FA of editing-pulses in the MEGA-PRESS experiment from 180° to 210° increases the edited signals from GABA+ and lactate by about 9% in vivo.


Assuntos
Ácido Láctico , Ácido gama-Aminobutírico , Voluntários Saudáveis , Humanos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas
17.
Magn Reson Med ; 87(4): 1649-1660, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34932240

RESUMO

PURPOSE: The spin-echo, full-intensity acquired localized (SPECIAL) sequence is a method for single-voxel, localized MRS in vivo with short TEs. In this study we modified the SPECIAL sequence to simultaneously record spectra from two volumes of interest. This new technique is called Hadamard-encoded dual-voxel SPECIAL (HD-SPECIAL). METHODS: The SPECIAL sequence consists of a spin echo localized to a column of tissue, preceded by a slice-selective inversion pulse in alternating scans to invert a section of the column. Full localization is achieved by subtraction of the inversion-on scans from the inversion-off scans. In HD-SPECIAL, the two-step inversion scheme is replaced by a four-step Hadamard-encoded scheme involving single-band and dual-band inversion pulses to select two regions of the spin-echo column. By appropriate Hadamard combination of the four acquired shots, spectra can be reconstructed from both desired regions. This approach does not rely on parallel imaging reconstruction. Using a 3T scanner, HD-SPECIAL localization is demonstrated both in phantoms and in the human brain in vivo, and the performance of HD-SPECIAL is assessed by comparing with the conventional SPECIAL sequence. RESULTS: Phantom and in vivo measurements show excellent agreement between measures from HD-SPECIAL and SPECIAL sequences. Relative to consecutive SPECIAL measurements from two regions, HD-SPECIAL reduces the total scan time 2-fold with minimal penalty in terms of spectral quality or SNR. CONCLUSION: The HD-SPECIAL sequence enables reliable acquisition of MR spectra simultaneously from two regions at 3 T, offering the potential to study interregional variations in metabolite concentrations.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas
18.
Neuroimage ; 238: 118172, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34082116

RESUMO

Many magnetic resonance imaging (MRI) measures are being studied longitudinally to explore topics such as biomarker detection and clinical staging. A pertinent concern to longitudinal work is MRI scanner upgrades. When upgrades occur during the course of a longitudinal MRI neuroimaging investigation, there may be an impact on the compatibility of pre- and post-upgrade measures. Similarly, subject motion is another issue that may be detrimental to MRI work and embedding volumetric navigators (vNavs) within acquisition sequences has emerged as a technique that allows for prospective motion correction. Our research group recently underwent an upgrade from a Siemens MAGNETOM 3T Tim Trio system to a Siemens MAGNETOM 3T Prisma Fit system. The goals of the current work were to: 1) investigate the impact of this upgrade on commonly used structural imaging measures and proton magnetic resonance spectroscopy indices ("Prisma Upgrade protocol") and 2) examine structural imaging measures in a sequence with vNavs alongside a standard acquisition sequence ("vNav protocol"). While high reliability was observed for most of the investigated MRI outputs, suboptimal reliability was observed for certain indices. Across the scanner upgrade, increases in frontal, temporal, and cingulate cortical thickness (CT) and thalamus volume, along with decreases in parietal CT and amygdala, globus pallidus, hippocampus, and striatum volumes, were observed. No significant impact of the upgrade was found in 1H-MRS analyses. Further, CT estimates were found to be larger in MPRAGE acquisitions compared to vNav-MPRAGE acquisitions mainly within temporal areas, while the opposite was found mostly in parietal brain regions. The results from this work should be considered in longitudinal study designs and comparable prospective motion correction investigations are warranted in cases of marked head movement.


Assuntos
Espessura Cortical do Cérebro , Encéfalo/diagnóstico por imagem , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Projetos de Pesquisa
19.
Neurobiol Aging ; 101: 109-122, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33610061

RESUMO

Normal aging is associated with numerous biological changes, including altered brain metabolism and tissue chemistry. In vivo characterization of the neurochemical profile during aging is possible using magnetic resonance spectroscopy, a powerful noninvasive technique capable of quantifying brain metabolites involved in physiological processes that become impaired with age. A prominent macromolecular signal underlies those of brain metabolites and is particularly visible at high fields; parameterization of this signal into components improves quantification and expands the number of biomarkers comprising the neurochemical profile. The present study reports, for the first time, the simultaneous absolute quantification of brain metabolites and individual macromolecules in aging male and female Fischer 344 rats, measured longitudinally using proton magnetic resonance spectroscopy at 7 T. We identified age- and sex-related changes in neurochemistry, with prominent differences in metabolites implicated in anaerobic energy metabolism, antioxidant defenses, and neuroprotection, as well as numerous macromolecule changes. These findings contribute to our understanding of the neurobiological processes associated with healthy aging, critical for the proper identification and management of pathologic aging trajectories. This article is part of the Virtual Special Issue titled COGNITIVE NEUROSCIENCE OF HEALTHY AND PATHOLOGICAL AGING. The full issue can be found on ScienceDirect athttps://www.sciencedirect.com/journal/neurobiology-of-aging/special-issue/105379XPWJP.


Assuntos
Encéfalo/metabolismo , Envelhecimento Saudável/genética , Envelhecimento Saudável/metabolismo , Substâncias Macromoleculares/metabolismo , Caracteres Sexuais , Animais , Metabolismo Energético , Feminino , Espectroscopia de Ressonância Magnética/métodos , Masculino , Ratos Endogâmicos F344
20.
NMR Biomed ; 34(5): e4484, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33559967

RESUMO

The translation of MRS to clinical practice has been impeded by the lack of technical standardization. There are multiple methods of acquisition, post-processing, and analysis whose details greatly impact the interpretation of the results. These details are often not fully reported, making it difficult to assess MRS studies on a standardized basis. This hampers the reviewing of manuscripts, limits the reproducibility of study results, and complicates meta-analysis of the literature. In this paper a consensus group of MRS experts provides minimum guidelines for the reporting of MRS methods and results, including the standardized description of MRS hardware, data acquisition, analysis, and quality assessment. This consensus statement describes each of these requirements in detail and includes a checklist to assist authors and journal reviewers and to provide a practical way for journal editors to ensure that MRS studies are reported in full.


Assuntos
Consenso , Espectroscopia de Ressonância Magnética , Relatório de Pesquisa/normas , Prova Pericial , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA