Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Image Anal ; 89: 102891, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37536022

RESUMO

Digitization of pathology has been proposed as an essential mitigation strategy for the severe staffing crisis facing most pathology departments. Despite its benefits, several barriers have prevented widespread adoption of digital workflows, including cost and pathologist reluctance due to subjective image quality concerns. In this work, we quantitatively determine the minimum image quality requirements for binary classification of histopathology images of breast tissue in terms of spatial and sampling resolution. We train an ensemble of deep learning classifier models on publicly available datasets to obtain a baseline accuracy and computationally degrade these images according to our derived theoretical model to identify the minimum resolution necessary for acceptable diagnostic accuracy. Our results show that images can be degraded significantly below the resolution of most commercial whole-slide imaging systems while maintaining reasonable accuracy, demonstrating that macroscopic features are sufficient for binary classification of stained breast tissue. A rapid low-cost imaging system capable of identifying healthy tissue not requiring human assessment could serve as a triage system for reducing caseloads and alleviating the significant strain on the current workforce.

2.
Nanoscale Adv ; 3(22): 6403-6414, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34913024

RESUMO

Intraoperative frozen section analysis can be used to improve the accuracy of tumour margin estimation during cancer resection surgery through rapid processing and pathological assessment of excised tissue. Its applicability is limited in some cases due to the additional risks associated with prolonged surgery, largely from the time-consuming staining procedure. Our work uses a measurable property of bulk tissue to bypass the staining process: as tumour cells proliferate, they influence the surrounding extra-cellular matrix, and the resulting change in elastic modulus provides a signature of the underlying pathology. In this work we accurately localise atomic force microscopy measurements of human liver tissue samples and train a generative adversarial network to infer elastic modulus from low-resolution images of unstained tissue sections. Pathology is predicted through unsupervised clustering of parameters characterizing the distributions of inferred values, achieving 89% accuracy for all samples based on the nominal assessment (n = 28), and 95% for samples that have been validated by two independent pathologists through post hoc staining (n = 20). Our results demonstrate that this technique could increase the feasibility of intraoperative frozen section analysis for use during resection surgery and improve patient outcomes.

3.
Am J Hematol ; 95(8): 883-891, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32282969

RESUMO

Over 200 million malaria cases globally lead to half a million deaths annually. Accurate malaria diagnosis remains a challenge. Automated imaging processing approaches to analyze Thick Blood Films (TBF) could provide scalable solutions, for urban healthcare providers in the holoendemic malaria sub-Saharan region. Although several approaches have been attempted to identify malaria parasites in TBF, none have achieved negative and positive predictive performance suitable for clinical use in the west sub-Saharan region. While malaria parasite object detection remains an intermediary step in achieving automatic patient diagnosis, training state-of-the-art deep-learning object detectors requires the human-expert labor-intensive process of labeling a large dataset of digitized TBF. To overcome these challenges and to achieve a clinically usable system, we show a novel approach. It leverages routine clinical-microscopy labels from our quality-controlled malaria clinics, to train a Deep Malaria Convolutional Neural Network classifier (DeepMCNN) for automated malaria diagnosis. Our system also provides total Malaria Parasite (MP) and White Blood Cell (WBC) counts allowing parasitemia estimation in MP/µL, as recommended by the WHO. Prospective validation of the DeepMCNN achieves sensitivity/specificity of 0.92/0.90 against expert-level malaria diagnosis. Our approach PPV/NPV performance is of 0.92/0.90, which is clinically usable in our holoendemic settings in the densely populated metropolis of Ibadan. It is located within the most populous African country (Nigeria) and with one of the largest burdens of Plasmodium falciparum malaria. Our openly available method is of importance for strategies aimed to scale malaria diagnosis in urban regions where daily assessment of thousands of specimens is required.


Assuntos
Malária Falciparum/sangue , Malária/diagnóstico , Redes Neurais de Computação , Humanos , Malária/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA