Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Open Forum Infect Dis ; 11(1): ofad612, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38269048

RESUMO

The optimum treatment for persistent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not known. Our case series, across 5 hospitals in 3 countries, describes 11 cases where persistent SARS-CoV-2 infection was successfully treated with prolonged courses (median, 10 days [range, 10-18 days]) of nirmatrelvir/ritonavir (Paxlovid). Most cases (9/11) had hematological malignancy and 10 (10/11) had received CD20-depleting therapy. The median duration of infection was 103 days (interquartile range, 85-138 days). The majority (10/11) were hospitalized, and 7 (7/11) had severe/critical disease. All survived and 9 of 11 demonstrated viral clearance, almost half (4/9) of whom received nirmatrelvir/ritonavir as monotherapy. This case series suggests that prolonged nirmatrelvir/ritonavir has a role in treating persistent infection.

2.
Am J Respir Crit Care Med ; 209(2): 164-174, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37938162

RESUMO

Rationale: Respiratory metagenomics (RMg) needs evaluation in a pilot service setting to determine utility and inform implementation into routine clinical practice. Objectives: Feasibility, performance, and clinical impacts on antimicrobial prescribing and infection control were recorded during a pilot RMg service. Methods: RMg was performed on 128 samples from 87 patients with suspected lower respiratory tract infection (LRTI) on two general and one specialist respiratory ICUs at Guy's and St Thomas' NHS Foundation Trust, London. Measurements and Main Results: During the first 15 weeks, RMg provided same-day results for 110 samples (86%), with a median turnaround time of 6.7 hours (interquartile range = 6.1-7.5 h). RMg was 93% sensitive and 81% specific for clinically relevant pathogens compared with routine testing. Forty-eight percent of RMg results informed antimicrobial prescribing changes (22% escalation; 26% deescalation) with escalation based on speciation in 20 out of 24 cases and detection of acquired-resistance genes in 4 out of 24 cases. Fastidious or unexpected organisms were reported in 21 samples, including anaerobes (n = 12), Mycobacterium tuberculosis, Tropheryma whipplei, cytomegalovirus, and Legionella pneumophila ST1326, which was subsequently isolated from the bedside water outlet. Application to consecutive severe community-acquired LRTI cases identified Staphylococcus aureus (two with SCCmec and three with luk F/S virulence determinants), Streptococcus pyogenes (emm1-M1uk clone), S. dysgalactiae subspecies equisimilis (STG62647A), and Aspergillus fumigatus with multiple treatments and public health impacts. Conclusions: This pilot study illustrates the potential of RMg testing to provide benefits for antimicrobial treatment, infection control, and public health when provided in a real-world critical care setting. Multicenter studies are now required to inform future translation into routine service.


Assuntos
Anti-Infecciosos , Infecções Respiratórias , Humanos , Projetos Piloto , Londres , Unidades de Terapia Intensiva , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/tratamento farmacológico
3.
mBio ; 14(5): e0120623, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37747187

RESUMO

IMPORTANCE: With the emergence of SARS-CoV-2 viral variants, there has been an increase in infections in vaccinated individuals. Here, we isolated monoclonal antibodies (mAbs) from individuals experiencing a breakthrough infection (Delta or BA.1) to determine how exposure to a heterologous Spike broadens the neutralizing antibody response at the monoclonal level. All mAbs isolated had reactivity to the Spike of the vaccine and infection variant. While many mAbs showed reduced neutralization of current circulating variants, we identified mAbs with broad and potent neutralization of BA.2.75.2, XBB, XBB.1.5, and BQ.1.1 indicating the presence of conserved epitopes on Spike. These results indicate that variant-based vaccine boosters have the potential to broaden the vaccine response.


Assuntos
Infecções Irruptivas , Vacinas , Humanos , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais
4.
Microb Genom ; 9(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37590039

RESUMO

Rapid respiratory viral whole genome sequencing (WGS) in a clinical setting can inform real-time outbreak and patient treatment decisions, but the feasibility and clinical utility of influenza A virus (IAV) WGS using Nanopore technology has not been demonstrated. A 24 h turnaround Nanopore IAV WGS protocol was performed on 128 reverse transcriptase PCR IAV-positive nasopharyngeal samples taken over seven weeks of the 2022-2023 winter influenza season, including 25 from patients with nosocomial IAV infections and 102 from patients attending the Emergency Department. WGS results were reviewed collectively alongside clinical details for interpretation and reported to clinical teams. All eight segments of the IAV genome were recovered for 97/128 samples (75.8 %) and the haemagglutinin gene for 117/128 samples (91.4 %). Infection prevention and control identified nosocomial IAV infections in 19 patients across five wards. IAV WGS revealed two separate clusters on one ward and excluded transmission across different wards with contemporaneous outbreaks. IAV WGS also identified neuraminidase inhibitor resistance in a persistently infected patient and excluded avian influenza in a sample taken from an immunosuppressed patient with a history of travel to Singapore which had failed PCR subtyping. Accurate IAV genomes can be generated in 24 h using a Nanopore protocol accessible to any laboratory with SARS-CoV-2 Nanopore sequencing capacity. In addition to replicating reference laboratory surveillance results, IAV WGS can identify antiviral resistance and exclude avian influenza. IAV WGS also informs management of nosocomial outbreaks, though molecular and clinical epidemiology were concordant in this study, limiting the impact on decision-making.


Assuntos
COVID-19 , Infecção Hospitalar , Vírus da Influenza A , Influenza Humana , Nanoporos , Humanos , Estudos de Viabilidade , Influenza Humana/tratamento farmacológico , Influenza Humana/epidemiologia , SARS-CoV-2/genética , Surtos de Doenças , Infecção Hospitalar/epidemiologia , Vírus da Influenza A/genética
5.
Front Genet ; 14: 1138582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051600

RESUMO

The ongoing SARS-CoV-2 pandemic demonstrates the utility of real-time sequence analysis in monitoring and surveillance of pathogens. However, cost-effective sequencing requires that samples be PCR amplified and multiplexed via barcoding onto a single flow cell, resulting in challenges with maximising and balancing coverage for each sample. To address this, we developed a real-time analysis pipeline to maximise flow cell performance and optimise sequencing time and costs for any amplicon based sequencing. We extended our nanopore analysis platform MinoTour to incorporate ARTIC network bioinformatics analysis pipelines. MinoTour predicts which samples will reach sufficient coverage for downstream analysis and runs the ARTIC networks Medaka pipeline once sufficient coverage has been reached. We show that stopping a viral sequencing run earlier, at the point that sufficient data has become available, has no negative effect on subsequent down-stream analysis. A separate tool, SwordFish, is used to automate adaptive sampling on Nanopore sequencers during the sequencing run. This enables normalisation of coverage both within (amplicons) and between samples (barcodes) on barcoded sequencing runs. We show that this process enriches under-represented samples and amplicons in a library as well as reducing the time taken to obtain complete genomes without affecting the consensus sequence.

6.
Clin Microbiol Infect ; 29(7): 887-890, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36925107

RESUMO

OBJECTIVES: Epidemiological and whole-genome sequencing analysis of an ongoing outbreak of Streptococcus pyogenes (Group A Streptococcus) in London (United Kingdom). METHODS: Prospective identification of Group A Streptococcus cases from a diagnostic laboratory serving central and south London between 27 November and 10 December 2022. Case notes were reviewed and isolates were retrieved. Case numbers were compared with the previous 5 years. Whole-genome sequencing was performed with long-read, nanopore technology for emm typing and identification of superantigen genes. Associations of pathogen-related factors with an invasive disease were assessed by single-variable and multi-variable logistic regression. RESULTS: Case numbers began increasing in October 2022 from a baseline of 2.0 cases per day, and in December 2022, the average daily case numbers reached 10.8 cases per day, four-fold the number usually seen in winter. A total of 113 cases were identified during the prospective study period. Three quarters (86/113, 76%) were paediatric cases, including 2 deaths. Of 113 cases, 11 (10%) were invasive. In total, 56 isolates were successfully sequenced, including 10 of 11 (91%) invasive isolates. The emm12 (33/56, 59%) and emm1 (9/56, 16%) types were predominant, with 7 of 9 (78%) emm1 isolates being from the M1uk clone. The majority of invasive isolates had superantigen genes spea (7/10, 70%) and spej (8/10, 80%), whereas, in non-invasive isolates, these superantigen genes were found less frequently (spea: 5/46, 11% and spej: 7/46, 15%). By multivariable analysis of pathogen-related factors, spea (OR 8.9, CI 1.4-57, p 0.020) and spej (OR 12, CI 1.8-78, p 0.011) were associated with invasive disease. CONCLUSIONS: emm12 and emm1 types predominate in the ongoing outbreak, which mainly affects children. In this outbreak, the spea and spej superantigen genes are associated with the severity of presentation.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Criança , Humanos , Estudos Prospectivos , Epidemiologia Molecular , Londres/epidemiologia , Antígenos de Bactérias/genética , Reino Unido/epidemiologia , Superantígenos/genética , Surtos de Doenças , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Proteínas da Membrana Bacteriana Externa/genética
7.
Oxf Open Immunol ; 4(1): iqac012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844257

RESUMO

Neutralizing monoclonal antibodies (mAbs) targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein have been developed for the treatment of COVID-19. Whilst antibody therapy has been shown to reduce the risk of COVID-19-associated hospitalization and death, there is limited understanding of the endogenous immunity to SARS-CoV-2 generated in mAb-treated patients and therefore ongoing susceptibility to future infections. Here we measure the endogenous antibody response in SARS-CoV-2-infected individuals treated with REGN-COV2 (Ronapreve). We show that in the majority of unvaccinated, delta-infected REGN-COV2-treated individuals, an endogenous antibody response is generated, but, like untreated, delta-infected individuals, there was a limited neutralization breadth. However, some vaccinated individuals who were seronegative at SARS-CoV-2 infection baseline and some unvaccinated individuals failed to produce an endogenous immune response following infection and REGN-COV2 treatment demonstrating the importance of mAb therapy in some patient populations.

8.
Clin Infect Dis ; 76(6): 1125-1128, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36327795

RESUMO

The management of coronavirus disease 2019 has become more complex due to the expansion of available therapies. The presence of severe acute respiratory syndrome coronavirus 2 variants and mutations further complicates treatment due to their differing susceptibilities to therapies. Here we outline the use of real-time whole genome sequencing to detect persistent infection, evaluate for mutations confering resistance to treatments, and guide treatment decisions.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Sequenciamento Completo do Genoma , Mutação
10.
J Virol ; 96(23): e0125022, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36350154

RESUMO

The appearance of new dominant variants of concern (VOC) of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) threatens the global response to the coronavirus disease 2019 (COVID-19) pandemic. Of these, the alpha variant (also known as B.1.1.7), which appeared initially in the United Kingdom, became the dominant variant in much of Europe and North America in the first half of 2021. The spike (S) glycoprotein of alpha acquired seven mutations and two deletions compared to the ancestral virus, including the P681H mutation adjacent to the polybasic cleavage site, which has been suggested to enhance S cleavage. Here, we show that the alpha spike protein confers a level of resistance to beta interferon (IFN-ß) in human lung epithelial cells. This correlates with resistance to an entry restriction mediated by interferon-induced transmembrane protein 2 (IFITM2) and a pronounced infection enhancement by IFITM3. Furthermore, the P681H mutation is essential for resistance to IFN-ß and context-dependent resistance to IFITMs in the alpha S. P681H reduces dependence on endosomal cathepsins, consistent with enhanced cell surface entry. However, reversion of H681 does not reduce cleaved spike incorporation into particles, indicating that it exerts its effect on entry and IFN-ß downstream of furin cleavage. Overall, we suggest that, in addition to adaptive immune escape, mutations associated with VOC may well also confer a replication and/or transmission advantage through adaptation to resist innate immune mechanisms. IMPORTANCE Accumulating evidence suggests that variants of concern (VOC) of SARS-CoV-2 evolve to evade the human immune response, with much interest focused on mutations in the spike protein that escape from antibodies. However, resistance to the innate immune response is essential for efficient viral replication and transmission. Here, we show that the alpha (B.1.1.7) VOC of SARS-CoV-2 is substantially more resistant to type I interferons than the parental Wuhan-like virus. This correlates with resistance to the antiviral protein IFITM2 and enhancement by its paralogue IFITM3. The key determinant of this is a proline-to-histidine change at position 681 in S adjacent to the furin cleavage site, which in the context of the alpha spike modulates cell entry pathways of SARS-CoV-2. Reversion of the mutation is sufficient to restore interferon and IFITM2 sensitivity, highlighting the dynamic nature of the SARS CoV-2 as it adapts to both innate and adaptive immunity in the humans.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Furina/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Linhagem Celular , Mutação , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo
11.
Cost Eff Resour Alloc ; 20(1): 60, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376920

RESUMO

BACKGROUND: Numerous studies have shown the effectiveness of testing for hepatitis B (HBV) and hepatitis C (HCV) in emergency departments (ED), due to the elevated prevalence amongst attendees. The aim of this study was to conduct a cost-effectiveness analysis of universal opt-out HBV and HCV testing in EDs based on 2 long-term studies of the real-world effectiveness of testing in 2 large ED's in the UK. METHODS: A Markov model was used to evaluate ED-based HBV and HCV testing versus no ED testing, in addition to current testing practice. The two EDs had a HBV HBsAg prevalence of 0.5-0.9% and an HCV RNA prevalence of 0.9-1.0%. The analysis was performed from a UK health service perspective, over a lifetime time horizon. Costs are reported in British pounds (GBP), and outcomes as quality adjusted life years (QALYs), with both discounted at 3.5% per year. Incremental cost-effectiveness ratios (ICER) are calculated as costs per QALY gained. A willingness-to-pay threshold of £20,000/QALY was used. The cost-effectiveness was estimated for both infections, in both ED's. RESULTS: HBV and HCV testing were highly cost-effective in both settings, with ICERs ranging from £7,177 to £12,387 per QALY gained. In probabilistic analyses, HBV testing was 89-94% likely to be cost-effective at the threshold, while HCV testing was 94-100% likely to be cost-effective, across both settings. In deterministic sensitivity analyses, testing remained cost-effective in both locations at ≥ 0.25% HBsAg prevalence, and ≥ 0.49% HCV RNA prevalence. This is much lower than the prevalence observed in the two EDs included in this study. CONCLUSIONS: HBV and HCV testing in urban EDs is highly cost-effective in the UK, and can be cost-effective at relatively low prevalence. These results should be reflected in UK and European hepatitis testing guidelines.

12.
Mol Psychiatry ; 27(12): 5049-5061, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36195636

RESUMO

Coronavirus disease 2019 (COVID-19), represents an enormous new threat to our healthcare system and particularly to the health of older adults. Although the respiratory symptoms of COVID-19 are well recognized, the neurological manifestations, and their underlying cellular and molecular mechanisms, have not been extensively studied yet. Our study is the first one to test the direct effect of serum from hospitalised COVID-19 patients on human hippocampal neurogenesis using a unique in vitro experimental assay with human hippocampal progenitor cells (HPC0A07/03 C). We identify the different molecular pathways activated by serum from COVID-19 patients with and without neurological symptoms (i.e., delirium), and their effects on neuronal proliferation, neurogenesis, and apoptosis. We collected serum sample twice, at time of hospital admission and approximately 5 days after hospitalization. We found that treatment with serum samples from COVID-19 patients with delirium (n = 18) decreased cell proliferation and neurogenesis, and increases apoptosis, when compared with serum samples of sex- and age-matched COVID-19 patients without delirium (n = 18). This effect was due to a higher concentration of interleukin 6 (IL6) in serum samples of patients with delirium (mean ± SD: 229.9 ± 79.1 pg/ml, vs. 32.5 ± 9.5 pg/ml in patients without delirium). Indeed, treatment of cells with an antibody against IL6 prevented the decreased cell proliferation and neurogenesis and the increased apoptosis. Moreover, increased concentration of IL6 in serum samples from delirium patients stimulated the hippocampal cells to produce IL12 and IL13, and treatment with an antibody against IL12 or IL13 also prevented the decreased cell proliferation and neurogenesis, and the increased apoptosis. Interestingly, treatment with the compounds commonly administered to acute COVID-19 patients (the Janus kinase inhibitors, baricitinib, ruxolitinib and tofacitinib) were able to restore normal cell viability, proliferation and neurogenesis by targeting the effects of IL12 and IL13. Overall, our results show that serum from COVID-19 patients with delirium can negatively affect hippocampal-dependent neurogenic processes, and that this effect is mediated by IL6-induced production of the downstream inflammatory cytokines IL12 and IL13, which are ultimately responsible for the detrimental cellular outcomes.


Assuntos
COVID-19 , Delírio , Hipocampo , Neurogênese , Idoso , Humanos , COVID-19/sangue , COVID-19/metabolismo , COVID-19/patologia , Delírio/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Interleucina-12/metabolismo , Interleucina-12/farmacologia , Interleucina-13/metabolismo , Interleucina-13/farmacologia , Interleucina-6 , Células-Tronco/metabolismo , Células-Tronco/virologia
13.
Elife ; 112022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36098502

RESUMO

Background: Viral sequencing of SARS-CoV-2 has been used for outbreak investigation, but there is limited evidence supporting routine use for infection prevention and control (IPC) within hospital settings. Methods: We conducted a prospective non-randomised trial of sequencing at 14 acute UK hospital trusts. Sites each had a 4-week baseline data collection period, followed by intervention periods comprising 8 weeks of 'rapid' (<48 hr) and 4 weeks of 'longer-turnaround' (5-10 days) sequencing using a sequence reporting tool (SRT). Data were collected on all hospital-onset COVID-19 infections (HOCIs; detected ≥48 hr from admission). The impact of the sequencing intervention on IPC knowledge and actions, and on the incidence of probable/definite hospital-acquired infections (HAIs), was evaluated. Results: A total of 2170 HOCI cases were recorded from October 2020 to April 2021, corresponding to a period of extreme strain on the health service, with sequence reports returned for 650/1320 (49.2%) during intervention phases. We did not detect a statistically significant change in weekly incidence of HAIs in longer-turnaround (incidence rate ratio 1.60, 95% CI 0.85-3.01; p=0.14) or rapid (0.85, 0.48-1.50; p=0.54) intervention phases compared to baseline phase. However, IPC practice was changed in 7.8 and 7.4% of all HOCI cases in rapid and longer-turnaround phases, respectively, and 17.2 and 11.6% of cases where the report was returned. In a 'per-protocol' sensitivity analysis, there was an impact on IPC actions in 20.7% of HOCI cases when the SRT report was returned within 5 days. Capacity to respond effectively to insights from sequencing was breached in most sites by the volume of cases and limited resources. Conclusions: While we did not demonstrate a direct impact of sequencing on the incidence of nosocomial transmission, our results suggest that sequencing can inform IPC response to HOCIs, particularly when returned within 5 days. Funding: COG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) (grant code: MC_PC_19027), and Genome Research Limited, operating as the Wellcome Sanger Institute. Clinical trial number: NCT04405934.


Assuntos
COVID-19 , Infecção Hospitalar , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos Prospectivos , Controle de Infecções/métodos , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/prevenção & controle , Hospitais
14.
BMJ ; 378: e072410, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902115

RESUMO

OBJECTIVE: To characterise the clinical features of monkeypox infection in humans. DESIGN: Descriptive case series. SETTING: A regional high consequences infectious disease centre with associated primary and secondary care referrals, and affiliated sexual health centres in south London between May and July 2022. PARTICIPANTS: 197 patients with polymerase chain reaction confirmed monkeypox infection. RESULTS: The median age of participants was 38 years. All 197 participants were men, and 196 identified as gay, bisexual, or other men who have sex with men. All presented with mucocutaneous lesions, most commonly on the genitals (n=111 participants, 56.3%) or in the perianal area (n=82, 41.6%). 170 (86.3%) participants reported systemic illness. The most common systemic symptoms were fever (n=122, 61.9%), lymphadenopathy (114, 57.9%), and myalgia (n=62, 31.5%). 102/166 (61.5%) developed systemic features before the onset of mucocutaneous manifestations and 64 (38.5%) after (n=4 unknown). 27 (13.7%) presented exclusively with mucocutaneous manifestations without systemic features. 71 (36.0%) reported rectal pain, 33 (16.8%) sore throat, and 31 (15.7%) penile oedema. 27 (13.7%) had oral lesions and 9 (4.6%) had tonsillar signs. 70/195 (35.9%) participants had concomitant HIV infection. 56 (31.5%) of those screened for sexually transmitted infections had a concomitant sexually transmitted infection. Overall, 20 (10.2%) participants were admitted to hospital for the management of symptoms, most commonly rectal pain and penile swelling. CONCLUSIONS: These findings confirm the ongoing unprecedented community transmission of monkeypox virus among gay, bisexual, and other men who have sex with men seen in the UK and many other non-endemic countries. A variable temporal association was observed between mucocutaneous and systemic features, suggesting a new clinical course to the disease. New clinical presentations of monkeypox infection were identified, including rectal pain and penile oedema. These presentations should be included in public health messaging to aid early diagnosis and reduce onward transmission.


Assuntos
Infecções por HIV , Mpox , Minorias Sexuais e de Gênero , Infecções Sexualmente Transmissíveis , Adulto , Surtos de Doenças , Feminino , Infecções por HIV/complicações , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , Homossexualidade Masculina , Humanos , Londres/epidemiologia , Masculino , Mpox/complicações , Dor/complicações , Infecções Sexualmente Transmissíveis/diagnóstico , Infecções Sexualmente Transmissíveis/epidemiologia
15.
BMJ Open ; 12(4): e052514, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440446

RESUMO

OBJECTIVES: Nosocomial transmission of SARS-CoV-2 has been a significant cause of mortality in National Health Service (NHS) hospitals during the COVID-19 pandemic. The COG-UK Consortium Hospital-Onset COVID-19 Infections (COG-UK HOCI) study aims to evaluate whether the use of rapid whole-genome sequencing of SARS-CoV-2, supported by a novel probabilistic reporting methodology, can inform infection prevention and control (IPC) practice within NHS hospital settings. DESIGN: Multicentre, prospective, interventional, superiority study. SETTING: 14 participating NHS hospitals over winter-spring 2020/2021 in the UK. PARTICIPANTS: Eligible patients must be admitted to hospital with first-confirmed SARS-CoV-2 PCR-positive test result >48 hour from time of admission, where COVID-19 diagnosis not suspected on admission. The projected sample size is 2380 patients. INTERVENTION: The intervention is the return of a sequence report, within 48 hours in one phase (rapid local lab processing) and within 5-10 days in a second phase (mimicking central lab), comparing the viral genome from an eligible study participant with others within and outside the hospital site. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcomes are incidence of Public Health England (PHE)/IPC-defined SARS-CoV-2 hospital-acquired infection during the baseline and two interventional phases, and proportion of hospital-onset cases with genomic evidence of transmission linkage following implementation of the intervention where such linkage was not suspected by initial IPC investigation. Secondary outcomes include incidence of hospital outbreaks, with and without sequencing data; actual and desirable changes to IPC actions; periods of healthcare worker (HCW) absence. Health economic analysis will be conducted to determine cost benefit of the intervention. A process evaluation using qualitative interviews with HCWs will be conducted alongside the study. TRIAL REGISTRATION NUMBER: ISRCTN50212645. Pre-results stage. This manuscript is based on protocol V.6.0. 2 September 2021.


Assuntos
COVID-19 , Infecção Hospitalar , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Teste para COVID-19 , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/prevenção & controle , Hospitais , Humanos , Estudos Multicêntricos como Assunto , Pandemias/prevenção & controle , Estudos Prospectivos , SARS-CoV-2/genética , Medicina Estatal , Resultado do Tratamento , Reino Unido/epidemiologia
16.
J Viral Hepat ; 29(7): 559-568, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35357750

RESUMO

Innovative testing approaches and care pathways are required to meet global hepatitis B virus (HBV) and hepatitis C virus (HCV) elimination goals. Routine blood-borne virus (BBV) testing in emergency departments (EDs) in high-prevalence areas is suggested by the European Centre for Disease Prevention and Control (ECDC) but there is limited evidence for this. Universal HIV testing in our ED according to UK guidance has been operational since 2015. We conducted a real-world service evaluation of a modified electronic patient record (EPR) system to include opportunistic opt-out HBV/reflex-HCV tests for any routine blood test orders for ED attendees aged ≥16 years. Reactive laboratory results were communicated directly to specialist clinical teams. Our model for contacting patients requiring linkage to care (new diagnoses/known but disengaged) evolved from initially primarily hospital-led to collaborating with regional health and community service networks. Over 11 months, 81,088 patients attended the ED; 36,865 (45.5%) had a blood test. Overall uptake for both HBV and HCV testing was 75%. Seroprevalence was 0.9% for hepatitis B surface antigen (HBsAg) and 0.9% for HCV antigen (HCV-Ag). 79% of 140 successfully contacted HBsAg+patients required linkage to care, of which 87% engaged. 76% of 130 contactable HCV-Ag+patients required linkage, 52% engaged. Our results demonstrate effectiveness and sustainability of universal ED EPR opt-out HBV/HCV testing combined with comprehensive linkage to care pathways, allowing care provision particularly for marginalized at-risk groups with limited healthcare access. The findings support the ECDC BBV testing guidance and may inform future UK hepatitis testing guidance.


Assuntos
Infecções por HIV , Hepatite B , Hepatite C , Serviço Hospitalar de Emergência , Hepacivirus , Hepatite B/diagnóstico , Hepatite B/epidemiologia , Hepatite B/prevenção & controle , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B , Hepatite C/diagnóstico , Hepatite C/epidemiologia , Humanos , Estudos Soroepidemiológicos
17.
mBio ; 13(2): e0379821, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35297676

RESUMO

Numerous studies have shown that a prior SARS-CoV-2 infection can greatly enhance the antibody response to COVID-19 vaccination, with this so called "hybrid immunity" leading to greater neutralization breadth against SARS-CoV-2 variants of concern. However, little is known about how breakthrough infection (BTI) in COVID-19-vaccinated individuals will impact the magnitude and breadth of the neutralizing antibody response. Here, we compared neutralizing antibody responses between unvaccinated and COVID-19-double-vaccinated individuals (including both AZD1222 and BNT162b2 vaccinees) who have been infected with the Delta (B.1.617.2) variant. Rapid production of spike-reactive IgG was observed in the vaccinated group, providing evidence of effective vaccine priming. Overall, potent cross-neutralizing activity against current SARS-CoV-2 variants of concern was observed in the BTI group compared to the infection group, including neutralization of the Omicron (B.1.1.529) variant. This study provides important insights into population immunity where transmission levels remain high and in the context of new or emerging variants of concern. IMPORTANCE COVID-19 vaccines have been vital in controlling SARS-CoV-2 infections and reducing hospitalizations. However, breakthrough SARS-CoV-2 infections (BTI) occur in some vaccinated individuals. Here, we study how BTI impacts on the potency and the breadth of the neutralizing antibody response. We show that a Delta infection in COVID-19-vaccinated individuals provides potent neutralization against the current SARS-CoV-2 variants of concern, including the Omicron variant.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Humanos , SARS-CoV-2/genética
18.
BMJ Open ; 12(2): e055474, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135773

RESUMO

BACKGROUND: The Alpha variant (B.1.1.7 lineage) of SARS-CoV-2 emerged and became the dominant circulating variant in the UK in late 2020. Current literature is unclear on whether the Alpha variant is associated with increased severity. We linked clinical data with viral genome sequence data to compare admitted cases between SARS-CoV-2 waves in London and to investigate the association between the Alpha variant and the severity of disease. METHODS: Clinical, demographic, laboratory and viral sequence data from electronic health record systems were collected for all cases with a positive SARS-CoV-2 RNA test between 13 March 2020 and 17 February 2021 in a multisite London healthcare institution. Multivariate analysis using logistic regression assessed risk factors for severity as defined by hypoxia at admission. RESULTS: There were 5810 SARS-CoV-2 RNA-positive cases of which 2341 were admitted (838 in wave 1 and 1503 in wave 2). Both waves had a temporally aligned rise in nosocomial cases (96 in wave 1 and 137 in wave 2). The Alpha variant was first identified on 15 November 2020 and increased rapidly to comprise 400/472 (85%) of sequenced isolates from admitted cases in wave 2. A multivariate analysis identified risk factors for severity on admission, such as age (OR 1.02, 95% CI 1.01 to 1.03, for every year older; p<0.001), obesity (OR 1.70, 95% CI 1.28 to 2.26; p<0.001) and infection with the Alpha variant (OR 1.68, 95% CI 1.26 to 2.24; p<0.001). CONCLUSIONS: Our analysis is the first in hospitalised cohorts to show increased severity of disease associated with the Alpha variant. The number of nosocomial cases was similar in both waves despite the introduction of many infection control interventions before wave 2.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Londres/epidemiologia , Pandemias , RNA Viral/genética , Índice de Gravidade de Doença
19.
J Clin Virol ; 147: 105080, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35086043

RESUMO

BACKGROUND: Viral diversity presents an ongoing challenge for diagnostic tests, which need to accurately detect all circulating variants. The Abbott Global Surveillance program monitors severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants and their impact on diagnostic test performance. OBJECTIVES: To evaluate the capacity of Abbott molecular, antigen, and serologic assays to detect circulating SARS-CoV-2 variants, including all current variants of concern (VOC): B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma) and B.1.617.2 (delta). STUDY DESIGN: Dilutions of variant virus cultures (B.1.1.7, B.1.351, B.1.429, B.1.526.1, B.1.526.2, B.1.617.1, B.1.617.2, P.1, R.1 and control isolate WA1) and a panel of N = 248 clinical samples from patients with sequence confirmed variant infections (B.1.1.7, B.1.351, B.1.427, B.1.429, B.1.526, B.1.526.1, B.1.526.2, P.1, P.2, R.1) were evaluated on at least one assay: Abbott ID NOW COVID-19, m2000 RealTime SARS-CoV-2, Alinity m SARS-CoV-2, and Alinity m Resp-4-Plex molecular assays; the BinaxNOW COVID-19 Ag Card and Panbio COVID-19 Ag Rapid Test Device; and the ARCHITECT/Alinity i SARS-CoV-2 IgG and AdviseDx IgM assays, Panbio COVID-19 IgG assay, and ARCHITECT/Alinity i AdviseDx SARS-CoV-2 IgG II assay. RESULTS: Consistent with in silico predictions, each molecular and antigen assay detected VOC virus cultures with equivalent sensitivity to the WA1 control strain. Notably, 100% of all tested variant patient specimens were detected by molecular assays (N = 197 m2000, N = 88 Alinity m, N = 99 ID NOW), and lateral flow assays had a sensitivity of >94% for specimens with genome equivalents (GE) per device above 4 log (85/88, Panbio; 54/57 Binax). Furthermore, Abbott antibody assays detected IgG and IgM in 94-100% of sera from immune competent B.1.1.7 patients 15-26 days after symptom onset. CONCLUSIONS: These data confirm variant detection for 11 SARS-CoV-2 assays, which is consistent with each assay target region being highly conserved. Importantly, alpha, beta, gamma, and delta VOCs were detected by molecular and antigen assays, indicating that these tests may be suitable for widescale use where VOCs predominate.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Humanos , Sensibilidade e Especificidade , Testes Sorológicos
20.
Clin Microbiol Infect ; 28(1): 93-100, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34400345

RESUMO

OBJECTIVES: To analyse nosocomial transmission in the early stages of the coronavirus 2019 (COVID-19) pandemic at a large multisite healthcare institution. Nosocomial incidence is linked with infection control interventions. METHODS: Viral genome sequence and epidemiological data were analysed for 574 consecutive patients, including 86 nosocomial cases, with a positive PCR test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the first 19 days of the pandemic. RESULTS: Forty-four putative transmission clusters were found through epidemiological analysis; these included 234 cases and all 86 nosocomial cases. SARS-CoV-2 genome sequences were obtained from 168/234 (72%) of these cases in epidemiological clusters, including 77/86 nosocomial cases (90%). Only 75/168 (45%) of epidemiologically linked, sequenced cases were not refuted by applying genomic data, creating 14 final clusters accounting for 59/77 sequenced nosocomial cases (77%). Viral haplotypes from these clusters were enriched 1-14x (median 4x) compared to the community. Three factors implicated unidentified cases in transmission: (a) community-onset or indeterminate cases were absent in 7/14 clusters (50%), (b) four clusters (29%) had additional evidence of cryptic transmission, and (c) in three clusters (21%) diagnosis of the earliest case was delayed, which may have facilitated transmission. Nosocomial cases decreased to low levels (0-2 per day) despite continuing high numbers of admissions of community-onset SARS-CoV-2 cases (40-50 per day) and before the impact of introducing universal face masks and banning hospital visitors. CONCLUSION: Genomics was necessary to accurately resolve transmission clusters. Our data support unidentified cases-such as healthcare workers or asymptomatic patients-as important vectors of transmission. Evidence is needed to ascertain whether routine screening increases case ascertainment and limits nosocomial transmission.


Assuntos
COVID-19 , Infecção Hospitalar , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/transmissão , Infecção Hospitalar/epidemiologia , Surtos de Doenças , Genoma Viral , Genômica , Hospitais , Humanos , Pandemias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA