Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7247, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538638

RESUMO

A wide-field microscope with epi-fluorescence and selective plane illumination was combined with a single-photon avalanche diode (SPAD) array camera to enable live-cell fluorescence lifetime imaging (FLIM) using time-correlated single-photon counting (TCSPC). The camera sensor comprised of 192 × 128 pixels, each integrating a single SPAD and a time-to-digital converter. Jointly, they produced a stream of single-photon images of photon arrival times with ≈ 38 ps accuracy. The photon arrival times were subject to systematic delays and nonlinearities, which were corrected by a Monte-Carlo algorithm. The SPAD camera was then applied to FLIM where histogramming the resulting photon arrival times in each pixel resulted in decays compatible with common data processing pipelines for fluorescence lifetime analysis. The capabilities of the TCSPC camera-based FLIM microscope were demonstrated by imaging living unicellular photosynthetic algae and artificial lipid vesicles. Epi-fluorescence illumination enabled rapid fluorescence lifetime imaging of living cells and selective-plane illumination enabled 3-dimensional FLIM of stationary samples.


Assuntos
Algoritmos , Microscopia de Fluorescência/métodos
2.
Herit Sci ; 11(1): 127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333623

RESUMO

The removal of varnish from the surface is a key step in painting conservation. Varnish removal is traditionally monitored by examining the painting surface under ultraviolet illumination. We show here that by imaging the fluorescence lifetime instead, much better contrast, sensitivity, and specificity can be achieved. For this purpose, we developed a lightweight (4.8 kg) portable instrument for macroscopic fluorescence lifetime imaging (FLIM). It is based on a time-correlated single-photon avalanche diode (SPAD) camera to acquire the FLIM images and a pulsed 440 nm diode laser to excite the varnish fluorescence. A historical model painting was examined to demonstrate the capabilities of the system. We found that the FLIM images provided information on the distribution of the varnish on the painting surface with greater sensitivity, specificity, and contrast compared to the traditional ultraviolet illumination photography. The distribution of the varnish and other painting materials was assessed using FLIM during and after varnish removal with different solvent application methods. Monitoring of the varnish removal process between successive solvent applications by a swab revealed an evolving image contrast as a function of the cleaning progress. FLIM of dammar and mastic resin varnishes identified characteristic changes to their fluorescence lifetimes depending on their ageing conditions. Thus, FLIM has a potential to become a powerful and versatile tool to visualise varnish removal from paintings.

3.
Biophys J ; 120(2): 254-269, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33345902

RESUMO

Förster resonance energy transfer (FRET) is a powerful tool to investigate the interaction between proteins in living cells. Fluorescence proteins, such as the green fluorescent protein (GFP) and its derivatives, are coexpressed in cells linked to proteins of interest. Time-resolved fluorescence anisotropy is a popular tool to study homo-FRET of fluorescent proteins as an indicator of dimerization, in which its signature consists of a very short component at the beginning of the anisotropy decay. In this work, we present an approach to study GFP homo-FRET via a combination of time-resolved fluorescence anisotropy, the stretched exponential decay model, and molecular dynamics simulations. We characterize a new, to our knowledge, FRET standard formed by two enhanced GFPs (eGFPs) and a flexible linker of 15 aminoacids (eGFP15eGFP) with this protocol, which is validated by using an eGFP monomer as a reference. An excellent agreement is found between the FRET efficiency calculated from the fit of the eGFP15eGFP fluorescence anisotropy decays with a stretched exponential decay model (〈EFRETexp〉 = 0.25 ± 0.05) and those calculated from the molecular dynamics simulations (〈EFRETMD〉 = 0.18 ± 0.14). The relative dipole orientation between the GFPs is best described by the orientation factors 〈κ2〉 = 0.17 ± 0.16 and 〈|κ|〉 = 0.35 ± 0.20, contextualized within a static framework in which the linker hinders the free rotation of the fluorophores and excludes certain configurations. The combination of time- and polarization-resolved fluorescence spectroscopy with molecular dynamics simulations is shown to be a powerful tool for the study and interpretation of homo-FRET.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Simulação de Dinâmica Molecular , Polarização de Fluorescência , Proteínas de Fluorescência Verde/genética , Microscopia de Fluorescência
4.
HardwareX ; 8: e00143, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33442569

RESUMO

A bottom-illuminated orbital shaker designed for the cultivation of microalgae suspensions is described in this open-source hardware report. The instrument agitates and illuminates microalgae suspensions grown inside flasks. It was optimized for low production cost, simplicity, low power consumption, design flexibility, consistent, and controllable growth light intensity. The illuminated orbital shaker is especially well suited for low-resource research laboratories and education. It is an alternative to commercial instruments for microalgae cultivation. It improves on typical do-it-yourself microalgae growth systems by offering consistent and well characterized illumination light intensity. The illuminated growth area is 20 cm × 15 cm, which is suitable for three T75 tissue culture flasks or six 100 ml Erlenmeyer flasks. The photosynthetic photon flux density, is variable in eight steps ( 26 - 800 µ mol · m - 2 · s - 1 ) and programmable in a 24-h light/dark cycle. The agitation speed is variable ( 0 - 210 RPM ). The overall material cost is around £300, including an entry-level orbital shaker. The build takes two days, requiring electronics and mechanical assembly capabilities. The instrument build is documented in a set of open-source protocols, design files, and source code. The design can be readily modified, scaled, and adapted for other orbital shakers and specific experimental requirements. The instrument function was validated by growing fresh-water microalgae Desmodesmus quadricauda and Chlorella vulgaris. The cultivation protocols, microalgae growth curves, and doubling times are included in this report.

5.
J Biophotonics ; 13(2): e201960099, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31661595

RESUMO

We report on wide-field time-correlated single photon counting (TCSPC)-based fluorescence lifetime imaging microscopy (FLIM) with lightsheet illumination. A pulsed diode laser is used for excitation, and a crossed delay line anode image intensifier, effectively a single-photon sensitive camera, is used to record the position and arrival time of the photons with picosecond time resolution, combining low illumination intensity of microwatts with wide-field data collection. We pair this detector with the lightsheet illumination technique, and apply it to 3D FLIM imaging of dye gradients in human cancer cell spheroids, and C. elegans.


Assuntos
Caenorhabditis elegans , Fótons , Animais , Humanos , Lasers , Microscopia de Fluorescência
7.
Cytometry A ; 95(6): 598-644, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31207046
8.
Opt Express ; 26(24): 31055-31074, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30650697

RESUMO

Time-correlated single-photon counting (TCSPC) is the gold standard for performing lifetime spectroscopy in biological assays. Traditional fluorescence lifetime imaging (FLIM) using laser scanning microscopes are inherently slow due to point scanning all pixels in the field-of-view. Wide-field implementations of TCSPC spectroscopy using microchannel plates benefit from particularly fast acquisition times at the expense of temporal resolution, and are fundamentally limited by photon counting rates. Here, we introduce programmable lifetime imaging (PLI), combining the advantages of wide-field imaging using total internal reflection excitation with state-of-the-art TCSPC detector technology for accurate lifetime determination in an object-oriented manner using a digital micromirror device (DMD). The fluorescent emission is projected onto the DMD to facilitate the sequential segmentation of fluorescence from individual objects in the field-of-view, allowing for both image acquisition and fluorescence lifetime determination of the assay. The sensitivity of PLI is demonstrated by manually segmenting fluorescence from fixed cell assays. We also demonstrate an automated implementation of PLI, using a camera as a feedback mechanism to segment fluorescence produced by emitting objects of interest in the imaging field-of-view, highlighting the advantages of measurement only in areas where valuable information exists. As a result, PLI is able to reduce acquisition time of fluorescence lifetime data by at least an order of magnitude compared to laser scanning implementations.

9.
Opt Lett ; 42(7): 1269-1272, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362747

RESUMO

Light-sheet microscopy has become an indispensable tool for fast, low phototoxicity volumetric imaging of biological samples, predominantly providing structural or analyte concentration data in its standard format. Fluorescence lifetime imaging microscopy (FLIM) provides functional contrast, but often at limited acquisition speeds and with complex implementation. Therefore, we incorporate a dedicated frequency domain CMOS FLIM camera and intensity-modulated laser into a light-sheet setup to add fluorescence lifetime imaging functionality, allowing the rapid acquisition of volumetric data with concentration independent contrast. We then apply the system to image live transgenic zebrafish, demonstrating the capacity to rapidly collect volumetric FLIM data from an in vivo sample.


Assuntos
Microscopia de Fluorescência/métodos , Animais , Animais Geneticamente Modificados , Fatores de Tempo , Peixe-Zebra/genética
10.
Opt Lett ; 41(4): 673-6, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26872160

RESUMO

Time-correlated single photon counting (TCSPC) is a fundamental fluorescence lifetime measurement technique offering high signal to noise ratio (SNR). However, its requirement for complex software algorithms for histogram processing restricts throughput in flow cytometers and prevents on-the-fly sorting of cells. We present a single-point digital silicon photomultiplier (SiPM) detector accomplishing real-time fluorescence lifetime-activated actuation targeting cell sorting applications in flow cytometry. The sensor also achieves burst-integrated fluorescence lifetime (BIFL) detection by TCSPC. The SiPM is a single-chip complementary metal-oxide-semiconductor (CMOS) sensor employing a 32×32 single-photon avalanche diode (SPAD) array and eight pairs of time-interleaved time to digital converters (TI-TDCs) with a 50 ps minimum timing resolution. The sensor's pile-up resistant embedded center of mass method (CMM) processor accomplishes low-latency measurement and thresholding of fluorescence lifetime. A digital control signal is generated with a 16.6 µs latency for cell sorter actuation allowing a maximum cell throughput of 60,000 cells per second and an error rate of 0.6%.


Assuntos
Citometria de Fluxo/instrumentação , Imagem Óptica , Óxidos/química , Fótons , Semicondutores , Silício/química , Razão Sinal-Ruído
11.
Cytometry A ; 87(2): 104-18, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25523156

RESUMO

Sensing ion or ligand concentrations, physico-chemical conditions, and molecular dimerization or conformation change is possible by assays involving fluorescent lifetime imaging. The inherent low throughput of imaging impedes rigorous statistical data analysis on large cell numbers. We address this limitation by developing a fluorescence lifetime-measuring flow cytometer for fast fluorescence lifetime quantification in living or fixed cell populations. The instrument combines a time-correlated single photon counting epifluorescent microscope with microfluidics cell-handling system. The associated computer software performs burst integrated fluorescence lifetime analysis to assign fluorescence lifetime, intensity, and burst duration to each passing cell. The maximum safe throughput of the instrument reaches 3,000 particles per minute. Living cells expressing spectroscopic rulers of varying peptide lengths were distinguishable by Förster resonant energy transfer measured by donor fluorescence lifetime. An epidermal growth factor (EGF)-stimulation assay demonstrated the technique's capacity to selectively quantify EGF receptor phosphorylation in cells, which was impossible by measuring sensitized emission on a standard flow cytometer. Dual-color fluorescence lifetime detection and cell-specific chemical environment sensing were exemplified using di-4-ANEPPDHQ, a lipophilic environmentally sensitive dye that exhibits changes in its fluorescence lifetime as a function of membrane lipid order. To our knowledge, this instrument opens new applications in flow cytometry which were unavailable due to technological limitations of previously reported fluorescent lifetime flow cytometers. The presented technique is sensitive to lifetimes of most popular fluorophores in the 0.5-5 ns range including fluorescent proteins and is capable of detecting multi-exponential fluorescence lifetime decays. This instrument vastly enhances the throughput of experiments involving fluorescence lifetime measurements, thereby providing statistically significant quantitative data for analysis of large cell populations. © 2014 International Society for Advancement of Cytometry.


Assuntos
Receptores ErbB/análise , Citometria de Fluxo/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Técnicas Analíticas Microfluídicas/métodos , Linhagem Celular Tumoral , Dimerização , Fator de Crescimento Epidérmico/análise , Receptores ErbB/metabolismo , Citometria de Fluxo/instrumentação , Imunofluorescência/métodos , Corantes Fluorescentes/química , Células HEK293 , Humanos , Células MCF-7 , Técnicas Analíticas Microfluídicas/instrumentação , Fosforilação , Compostos de Piridínio/química
12.
PLoS One ; 9(10): e110695, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25360776

RESUMO

We present a novel imaging system combining total internal reflection fluorescence (TIRF) microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET) imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor.


Assuntos
Membrana Celular/metabolismo , Polarização de Fluorescência/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Imagem Molecular/métodos , Técnicas Biossensoriais , Humanos , Células MCF-7 , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
13.
PLoS One ; 7(12): e51675, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23272136

RESUMO

We present a web engine boosted fluorescence in-situ hybridization (webFISH) algorithm using a genome-wide sequence similarity search to design target-specific single-copy and repetitive DNA FISH probes. The webFISH algorithm featuring a user-friendly interface (http://www.webfish2.org/) maximizes the coverage of the examined sequences with FISH probes by considering locally repetitive sequences absent from the remainder of the genome. The highly repetitive human immunoglobulin heavy chain sequence was analyzed using webFISH to design three sets of FISH probes. These allowed direct simultaneous detection of class switch recombination in both immunoglobulin-heavy chain alleles in single cells from a population of cultured primary B cells. It directly demonstrated asynchrony of the class switch recombination in the two alleles in structurally preserved nuclei while permitting parallel readout of protein expression by immunofluorescence staining. This novel technique offers the possibility of gaining unprecedented insight into the molecular mechanisms involved in class switch recombination.


Assuntos
Sondas de DNA , Switching de Imunoglobulina , Hibridização in Situ Fluorescente , Recombinação Genética , Software , Biologia Computacional/métodos , Humanos , Processamento de Imagem Assistida por Computador , Cadeias Pesadas de Imunoglobulinas/genética , Internet , Interface Usuário-Computador
14.
PLoS One ; 6(9): e24571, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21949728

RESUMO

Antibodies are assembled by a highly orchestrated series of recombination events during B cell development. One of these events, class switch recombination, is required to produce the IgG, IgE and IgA antibody isotypes characteristic of a secondary immune response. The action of the enzyme activation induced cytidine deaminase is now known to be essential for the initiation of this recombination event. Previous studies have demonstrated that the immunoglobulin switch regions acquire distinct histone modifications prior to recombination. We now present a high resolution analysis of these histone modifications across the IgE switch region prior to the initiation of class switch recombination in primary human B cells and the human CL-01 B cell line. These data show that upon stimulation with IL-4 and an anti-CD40 antibody that mimics T cell help, the nucleosomes of the switch regions are highly modified on histone H3, accumulating acetylation marks and tri-methylation of lysine 4. Distinct peaks of modified histones are found across the switch region, most notably at the 5' splice donor site of the germline (I) exon, which also accumulates AID. These data suggest that acetylation and K4 tri-methylation of histone H3 may represent marks of recombinationally active chromatin and further implicates splicing in the regulation of AID action.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Cromatina/genética , Imunoglobulina E/genética , Região de Troca de Imunoglobulinas/genética , Adolescente , Linfócitos B/efeitos dos fármacos , Antígenos CD40/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Criança , Pré-Escolar , Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/genética , Loci Gênicos/efeitos dos fármacos , Loci Gênicos/genética , Humanos , Região de Troca de Imunoglobulinas/efeitos dos fármacos , Interleucina-4/farmacologia , Tonsila Palatina/imunologia , Recombinação Genética/efeitos dos fármacos , Recombinação Genética/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA