Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(46): 28164-28173, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36398658

RESUMO

Perovskite-type oxhydrides such as BaTiO3-xHy exhibit mixed hydride ion and electron conduction and are an attractive class of materials for developing energy storage devices. However, the underlying mechanism of electric conductivity and its relation to the composition of the material remains unclear. Here we report detailed insights into the hydride local environment, the electronic structure and hydride conduction dynamics of barium titanium oxyhydride. We demonstrate that DFT-assisted solid-state NMR is an excellent tool for differentiating between the different feasible electronic structures in these solids. Our results indicate that upon reduction of BaTiO3 the introduced electrons are delocalized among all Ti atoms forming a bandstate. Furthermore, each vacated anion site is reoccupied by at most a single hydride, or else remains vacant. This single occupied bandstate structure persists at different hydrogen concentrations (y = 0.13-0.31) and a wide range of temperatures (∼100-300 K).

2.
RSC Adv ; 10(58): 35356-35365, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35515653

RESUMO

We investigated the hydride reduction of tetragonal BaTiO3 using LiH. The reactions employed molar H : BaTiO3 ratios of 1.2, 3, and 10 and variable temperatures up to 700 °C. The air-stable reduced products were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy, thermogravimetric analysis (TGA), X-ray fluorescence (XRF), and 1H magic-angle spinning (MAS) NMR spectroscopy. Effective reduction, as indicated by the formation of dark blue to black colored, cubic-phased, products was observed at temperatures as low as 300 °C. The product obtained at 300 °C corresponded to oxyhydride BaTiO∼2.9H∼0.1, whereas reduction at higher temperatures resulted in simultaneous O defect formation, BaTiO2.9-x H0.1□ x , and eventually - at temperatures above 450 °C - to samples void of hydridic H. Concomitantly, the particles of samples reduced at high temperatures (500-600 °C) display substantial surface alteration, which is interpreted as the formation of a TiO x (OH) y shell, and sintering. Diffuse reflectance UV-VIS spectroscopy shows broad absorption in the VIS-NIR region, which is indicative of the presence of n-type free charge carriers. The size of the intrinsic band gap (∼3.2 eV) appears only slightly altered. Mott-Schottky measurements confirm the n-type conductivity and reveal shifts of the conduction band edge in the LiH reduced samples. Thus LiH appears as a versatile reagent to produce various distinct forms of reduced BaTiO3 with tailored electronic properties.

3.
ACS Omega ; 3(9): 11426-11438, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459246

RESUMO

We investigated the hydride reduction of tetragonal BaTiO3 using the metal hydrides CaH2, NaH, MgH2, NaBH4, and NaAlH4. The reactions employed molar BaTiO3/H ratios of up to 1.8 and temperatures near 600 °C. The air-stable reduced products were characterized by powder X-ray diffraction (PXRD), transmission electron microscopy, thermogravimetric analysis (TGA), and 1H magic angle spinning (MAS) NMR spectroscopy. PXRD showed the formation of cubic products-indicative of the formation of BaTiO3-x H x -except for NaH. Lattice parameters were in a range between 4.005 Å (for NaBH4-reduced samples) and 4.033 Å (for MgH2-reduced samples). With increasing H/BaTiO3 ratio, CaH2-, NaAlH4-, and MgH2-reduced samples were afforded as two-phase mixtures. TGA in air flow showed significant weight increases of up to 3.5% for reduced BaTiO3, suggesting that metal hydride reduction yielded oxyhydrides BaTiO3-x H x with x values larger than 0.5. 1H MAS NMR spectroscopy, however, revealed rather low concentrations of H and thus a simultaneous presence of O vacancies in reduced BaTiO3. It has to be concluded that hydride reduction of BaTiO3 yields complex disordered materials BaTiO3-x H y □(x-y) with x up to 0.6 and y in a range 0.04-0.25, rather than homogeneous solid solutions BaTiO3-x H x . Resonances of (hydridic) H substituting O in the cubic perovskite structure appear in the -2 to -60 ppm spectral region. The large range of negative chemical shifts and breadth of the signals signifies metallic conductivity and structural disorder in BaTiO3-x H y □(x-y). Sintering of BaTiO3-x H y □(x-y) in a gaseous H2 atmosphere resulted in more ordered materials, as indicated by considerably sharper 1H resonances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA