Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11341, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443396

RESUMO

Sisal fiber is a potent economical biomaterial for designing composites because of its low density, high specific strength, no toxic effects, and renewability. The present study utilized sisal fiber as a starting material and subjected it to modification to produce a sisal fiber/polyaniline/bio-surfactant rhamnolipid-layered double hydroxide nanocomposite material denoted as SF@PANI@LDH@RL. The composite was evaluated for its efficacy in removing reactive orange 16 (RO16) and methylene blue (MB) from aqueous solutions. The synthesized adsorbent was characterized by FTIR, XRD, and SEM-EDS techniques; these analyses indicated the successful modification of the sisal fiber. The primary factors, including contact time, adsorbent dosage, dye concentration, temperature, and pH, were optimized for achieving the most excellent adsorption efficiency. On the one hand, methylene blue removal is enhanced in the basic solution (pH = 10). On the other hand, reactive orange 16 adsorption was favored in the acidic solution (pH = 3). The highest adsorption capacities for methylene blue and reactive orange 16 were 24.813 and 23.981 mg/g at 318 K, respectively. The Temkin isotherm model, which proves the adsorption procedure of methylene blue and reactive orange 16 could be regarded as a chemisorption procedure, supplies the most suitable explanation for the adsorption of methylene blue (R2 = 0.983) and reactive orange 16 (R2 = 0.996). Furthermore, Elovich is the best-fitting kinetic model for both dyes (R2 = 0.986 for MB and R2 = 0.987 for RO16). The recommended SF@PANI@LDH@RL adsorbent was reused six consecutive times and showed stable adsorption performance. The results demonstrate that SF@PANI@LDH@RL is a perfect adsorbent for eliminating cationic and anionic organic dyes from aqueous media.


Assuntos
Nanocompostos , Surfactantes Pulmonares , Descoloração da Água , Poluentes Químicos da Água , Tensoativos , Azul de Metileno/química , Termodinâmica , Corantes , Hidróxidos , Cinética , Nanocompostos/química , Adsorção , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
2.
Int J Phytoremediation ; 25(5): 586-597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35786106

RESUMO

In the present study, sisal-Fe/Zn LDH bio-nanocomposite for efficiently removing rifampin was synthesized using a simple co-precipitation method. SEM, XRD, and FTIR analyses were applied to characterize the prepared composite. In the following, different factors that are affecting the adsorption of rifampin, including contact time, initial rifampin concentration, adsorbent dosage, and temperature were evaluated. Also, the kinetic, isotherm, and thermodynamic studies were investigated. The results indicated that Freundlich (R2 = 0.9976) was a suitable model for describing the adsorption equilibrium and adsorption kinetic showed that the data are in maximum agreement with the pseudo-second-order kinetic model (R2 = 0.9931). According to the Langmuir isotherm model, the maximum adsorption capacity of rifampin was found to be 40.00 mg/g. The main mechanisms for rifampin elimination were introduced as electrostatic attraction and physical adsorption. Moreover, the spontaneity and nature of the reaction were analyzed by elucidating thermodynamic factors that indicated the adsorption process was exothermic and spontaneous. Also, the batch process design indicated that for treating 10 L wastewater containing 100 mg/L rifampin with a removal efficiency of 96%, the needed amount of sisal-Fe/Zn LDH is 51.6 g. This study revealed that the sisal-Fe/Zn LDH bio-nanocomposites as a low-cost adsorbent have promising adsorption potential.


In this study, an innovative bio-nanocomposite (sisal­Fe/Zn layered double hydroxide) has been synthesized using a co-precipitation method for the first time and was used for the removal of pharmaceutical pollutants. Sisal­Fe/Zn LDH exhibited an excellent adsorption capacity of 40.00 mg/g to remove rifampin from the aqueous solution. The main mechanisms for rifampin elimination were introduced as electrostatic attraction and physical adsorption. Also, the batch process design showed that for treating 10 L wastewater containing 100 mg/L rifampin with a removal rate of 96%, the amount of sisal­LDH bio-nanocomposite required is about 51.6 g. Therefore, sisal­Fe/Zn layered double hydroxide as an eco-friendly biosorbent can be considered for future water treatment.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Rifampina/análise , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Biodegradação Ambiental , Hidróxidos/análise , Água/análise , Termodinâmica , Cinética , Adsorção , Zinco
3.
Sci Rep ; 12(1): 16442, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180518

RESUMO

Dye pollution has always been a serious concern globally, threatening the lives of humans and the ecosystem. In the current study, treated lignocellulosic biomass waste supported with FeCl3/Zn(NO3)2 was utilized as an effective composite for removing Reactive Orange 16 (RO16). SEM/EDAX, FTIR, and XRD analyses exhibited that the prepared material was successfully synthesized. The removal efficiency of 99.1% was found at an equilibrium time of 110 min and dye concentration of 5 mg L-1 Adsorbent mass of 30 mg resulted in the maximum dye elimination, and the efficiency of the process decreased by increasing the temperature from 25 to 40 °C. The effect of pH revealed that optimum pH was occurred at acidic media, having the maximum dye removal of greater than 90%. The kinetic and isotherm models revealed that RO16 elimination followed pseudo-second-order (R2 = 0.9982) and Freundlich (R2 = 0.9758) assumptions. Surprisingly, the performance of modified sawdust was 15.5 times better than the raw sawdust for the dye removal. In conclusion, lignocellulosic sawdust-Fe/Zn composite is promising for dye removal.


Assuntos
Descoloração da Água , Poluentes Químicos da Água , Adsorção , Compostos Azo , Biomassa , Ecossistema , Humanos , Concentração de Íons de Hidrogênio , Cinética , Lignina , Águas Residuárias , Zinco
4.
Sci Rep ; 12(1): 14623, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028532

RESUMO

In the present research, magnetic rhamnolipid-Co/Al layered double hydroxide (MR-LDH) was synthesized to uptake methylene blue (MB) and reactive orange 16 (RO16) from aqueous solution. The main parameters, including pH, adsorbent dosage, contact time, and initial analyte concentration, were optimized to achieve the best adsorption efficiency. Accordingly, the elimination of MB on MR-LDH is improved in the basic medium due to the electrostatic interactions between the negative charge of MR-LDH and the positive charge of MB dye. In contrast, the acidic medium (pH = 3) was favored for RO16 adsorption because of hydrogen bonding between the protonated form of azo dye and protonated hydroxyl groups at the surface of MR-LDH. The calculated maximum adsorption capacities for MB and RO16 were 54.01 and 53.04 mg/g at 313 K, respectively. The Langmuir model, which assumes monolayer adsorption on the adsorbent surface, provides the best explanation for the adsorption of both dyes (R2 = 0.9991 for MB and R2 = 0.9969 for RO16). Moreover, the pseudo-second-order kinetic model best described the adsorption process for MB (R2 = 0.9970) and RO16 (R2 = 0.9941). The proposed adsorbent maintains stable adsorption performance for four consecutive cycles. After each adsorption process, MR-LDH is easily separated by an external magnet. The findings show that MR-LDH was found to be an excellent adsorbent for the removal of both cationic and anionic organic dyes from aqueous solutions.


Assuntos
Corantes , Poluentes Químicos da Água , Adsorção , Glicolipídeos , Hidróxidos , Cinética , Fenômenos Magnéticos , Azul de Metileno , Água
5.
Int J Biol Macromol ; 162: 663-677, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32544583

RESUMO

The severe effects of pharmaceutical and personal care products (PPCPs) could not be ignored and they must be eliminated prior to their release to the environment. In this study, cellulosic sisal fibre was modified simultaneously by polypyrrole-polyaniline nanoparticles and it was employed as a cost-effective, non-toxic nano bio-composite for the elimination of ibuprofen. It was characterized by SEM, EDAX, FTIR, and XRD. Parameters were tested in the form of the one-factor-at-a-time method. These parameters were contact time, pH, initial ibuprofen concentration, adsorbent dosage, agitation speed, and temperature and the optimized conditions obtained were 60 min, 5, 30 mg/L, 150 mg, 200 rpm, and 313 K, respectively and ibuprofen removal efficiency reached 88%. Furthermore, Kinetics data were fitted on the Pseudo-second model (R2 0.9991), indicating a chemisorption process. The Isothermal study demonstrated that Sips assumptions had the greatest R2 value in the examined temperatures (R2 0.9985 at 298 K). Energy site distribution revealed that at the higher temperature more binding sites were activated on the modified cellulosic Sisal, resulted in greater adsorption capacity, with the highest capacity of 19.45 mg/g (based on the Langmuir model) at 313 K. Modified cellulosic Sisal can be concluded to be a cost-effective, prominent, and efficient adsorbent for ibuprofen removal.


Assuntos
Biomassa , Celulose/química , Ibuprofeno/química , Modelos Químicos , Nanocompostos/química , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA