Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36616142

RESUMO

Sesbania sesban (L.) Merr. is a multipurpose legume tree grown primarily for fodder and forage in the tropical and subtropical world. In this study, the Sesbania sesban collection maintained in the International Livestock Research Institute (ILRI) forage Genebank was studied using genome-wide markers generated on the DArTseq platform. Genotyping produced 84,673 and 60,626 SNP and SilicoDArT markers with a mean polymorphic information content of 0.153 and 0.123, respectively. From the generated markers, 7587 and 15,031 highly informative SNP and SilicoDArT markers, respectively, were filtered and used for genetic diversity analysis and subset development. Analysis of molecular variance (AMOVA) revealed higher variability 'within' (52.73% for SNP markers and 67.36% for SilicoDArT markers) than 'between' accessions. Hierarchical cluster analysis showed the presence of four main clusters in the collection. Mantel correlation analysis showed a lack of relationship between genetic variation of the germplasm and their geographical origin. A representative subset of 34 accessions containing germplasm from diverse origins and agro-ecologies was developed using SNP markers. The genetic diversity information generated in this study could be used for marker-assisted screening for stress tolerance, gap analysis and identification and acquisition of new distinct genotype(s) to broaden the genetic basis of the collection for future improvement programs to develop high-yielding, stress-tolerant varieties for enhancing food and environmental security in crop-livestock-based production systems.

2.
Genes (Basel) ; 12(8)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34440407

RESUMO

Rhodes grass (Chloris gayana Kunth) is one of the most important forage grasses used throughout the tropical and subtropical regions of the world. Enhancing the conservation and use of genetic resources requires the development of knowledge and understanding about the existing global diversity of the species. In this study, 104 Rhodes grass accessions, held in trust in the ILRI forage genebank, were characterized using DArTSeq markers to evaluate the genetic diversity and population structure, and to develop representative subsets, of the collection. The genotyping produced 193,988 SNP and 142,522 SilicoDArT markers with an average polymorphic information content of 0.18 and 0.26, respectively. Hierarchical clustering using selected informative markers showed the presence of two and three main clusters using SNP and SilicoDArT markers, respectively, with a cophenetic correction coefficient of 82%. Bayesian population structure analysis also showed the presence of two main subpopulations using both marker types indicating the existence of significant genetic variation in the collection. A representative subset, containing 21 accessions from diverse origins, was developed using the SNP markers. In general, the results revealed substantial genetic diversity in the Rhodes grass collection, and the generated molecular information, together with the developed subset, should help enhance the management, use and improvement of Rhodes grass germplasm in the future.


Assuntos
Variação Genética , Poaceae/genética , Genes de Plantas , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala
3.
Plants (Basel) ; 10(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572058

RESUMO

The inherent ability of seeds (orthodox, intermediate, and recalcitrant seeds and vegetative propagules) to serve as carriers of pests and pathogens (hereafter referred to as pests) and the risk of transboundary spread along with the seed movement present a high-risk factor for international germplasm distribution activities. Quarantine and phytosanitary procedures have been established by many countries around the world to minimize seed-borne pest spread by screening export and import consignments of germplasm. The effectiveness of these time-consuming and cost-intensive procedures depends on the knowledge of pest distribution, availability of diagnostic tools for seed health testing, qualified operators, procedures for inspection, and seed phytosanitation. This review describes a unique multidisciplinary approach used by the CGIAR Germplasm Health Units (GHUs) in ensuring phytosanitary protection for the safe conservation and global movement of germplasm from the 11 CGIAR genebanks and breeding programs that acquire and distribute germplasm to and from all parts of the world for agricultural research and food security. We also present the challenges, lessons learned, and recommendations stemming from the experience of GHUs, which collaborate with the national quarantine systems to export and distribute about 100,000 germplasm samples annually to partners located in about 90 to 100 countries. Furthermore, we describe how GHUs adjust their procedures to stay in alignment with evolving phytosanitary regulations and pest risk scenarios. In conclusion, we state the benefits of globally coordinated phytosanitary networks for the prevention of the intercontinental spread of pests that are transmissible through plant propagation materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA