Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 67(23)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36541499

RESUMO

Objective. Even though the techniques used for breast cancer identification have advanced over the years, current mammography based on x-rays absorption, the 'gold standard' screening test at present, still has some shortcomings as concerns sensitivity and specificity to early-stage cancers, due to poor differentiation between tumor and normal tissues, especially in the case of the dense breasts. We investigate a possible additional technique for breast cancer detection with higher sensitivity and low dose, x-ray phase-contrast or refraction-based imaging with ultrahigh angular sensitivity grating interferometers, having several meters length.Approach.Towards this goal, we built and tested on a mammography phantom, a table-top laboratory setup based on a 5.7 m long Talbot-Lau interferometer with angular sensitivity better than 1µrad. We used a high-power x-ray tungsten anode tube with a 400µm focal spot, operated at 40 kVp and 15 mA with a 2 mm aluminum filter.Main results.The results reported in our paper confirm the ultrahigh sensitivity and dose economy possible with our setup. The visibility of objects simulating cancerous formations is strongly increased in the refraction images over the attenuation ones, even at a low dose of 0.32 mGy. Notably, the smallest fiber of 400µm diameter and calcifications specs of 160µm in diameter are detected, even though the spatial resolution at the object of our magnification M ∼ 2 setup with a 400µm source spot is only ∼250µm.Significance.Our experiments on a mammography phantom illustrate the capabilities of the proposed technique and can open the way toward low-dose interferometric mammography.


Assuntos
Neoplasias da Mama , Calcinose , Humanos , Feminino , Mamografia/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Radiografia , Raios X , Imagens de Fantasmas
2.
Rev Sci Instrum ; 92(11): 113303, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852516

RESUMO

The advent of multi-PW laser facilities world-wide opens new opportunities for nuclear physics. With this perspective, we developed a neutron counter taking into account the specifics of a high-intensity laser environment. Using GEANT4 simulations and prototype testings, we report on the design of a modular neutron counter based on boron-10 enriched scintillators and a high-density polyethylene moderator. This detector has been calibrated using a plutonium-beryllium neutron source and commissioned during an actual neutron-producing laser experiment at the LULI2000 facility (France). An overall efficiency of 4.37(59)% has been demonstrated during calibration with a recovery time of a few hundred microseconds after laser-plasma interaction.

3.
Rep Prog Phys ; 81(9): 094301, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29952755

RESUMO

The European Strategy Forum on Research Infrastructures (ESFRI) has selected in 2006 a proposal based on ultra-intense laser fields with intensities reaching up to 1022-1023 W cm-2 called 'ELI' for Extreme Light Infrastructure. The construction of a large-scale laser-centred, distributed pan-European research infrastructure, involving beyond the state-of-the-art ultra-short and ultra-intense laser technologies, received the approval for funding in 2011-2012. The three pillars of the ELI facility are being built in Czech Republic, Hungary and Romania. The Romanian pillar is ELI-Nuclear Physics (ELI-NP). The new facility is intended to serve a broad national, European and International science community. Its mission covers scientific research at the frontier of knowledge involving two domains. The first one is laser-driven experiments related to nuclear physics, strong-field quantum electrodynamics and associated vacuum effects. The second is based on a Compton backscattering high-brilliance and intense low-energy gamma beam (<20 MeV), a marriage of laser and accelerator technology which will allow us to investigate nuclear structure and reactions as well as nuclear astrophysics with unprecedented resolution and accuracy. In addition to fundamental themes, a large number of applications with significant societal impact are being developed. The ELI-NP research centre will be located in Magurele near Bucharest, Romania. The project is implemented by 'Horia Hulubei' National Institute for Physics and Nuclear Engineering (IFIN-HH). The project started in January 2013 and the new facility will be fully operational by the end of 2019. After a short introduction to multi-PW lasers and multi-MeV brilliant gamma beam scientific and technical description of the future ELI-NP facility as well as the present status of its implementation of ELI-NP, will be presented. The science and examples of societal applications at reach with these electromagnetic probes with much improved performances provided at this new facility will be discussed with a special focus on day-one experiments and associated novel instrumentation.

4.
Phys Rev Lett ; 115(5): 054802, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26274423

RESUMO

The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ∼3 ns duration neutron pulse with 10(4) n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. This neutron pulse compares favorably to the duration of conventional accelerator sources and should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.

5.
Phys Rev Lett ; 110(8): 082502, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23473138

RESUMO

A long-lived J(π) = 4(1)(+) isomer, T(1/2) = 2.2(1) ms, has been discovered at 643.4(1) keV in the weakly bound (9)(26)F nucleus. It was populated at Grand Accélérateur National d'Ions Lourds in the fragmentation of a (36)S beam. It decays by an internal transition to the J(π) = 1(1)(+) ground state [82(14)%], by ß decay to (26)Ne, or ß-delayed neutron emission to (25)Ne. From the ß-decay studies of the J(π) =1(1)(+) and J(π) = 4(1)(+) states, new excited states have been discovered in (25,26)Ne. Gathering the measured binding energies of the J(π) = 1(1)(+) -4(1)(+) multiplet in (9)(26)F, we find that the proton-neutron π0d(5/2)ν0d(3/2) effective force used in shell-model calculations should be reduced to properly account for the weak binding of (9)(26)F. Microscopic coupled cluster theory calculations using interactions derived from chiral effective field theory are in very good agreement with the energy of the low-lying 1(1)(+), 2(1)(+), 4(1)(+) states in (26)F. Including three-body forces and coupling to the continuum effects improve the agreement between experiment and theory as compared to the use of two-body forces only.

6.
Phys Rev Lett ; 109(9): 092503, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-23002828

RESUMO

The 02(+) state in 34Si has been populated at the GANIL-LISE3 facility through the ß decay of a newly discovered 1(+) isomer in 34Al of 26(1) ms half-life. The simultaneous detection of e(+)e(-) pairs allowed the determination of the excitation energy E(02(+))=2719(3) keV and the half-life T(1/2)=19.4(7) ns, from which an electric monopole strength of ρ(2)(E0)=13.0(0.9)×10(-3) was deduced. The 2(1)(+) state is observed to decay both to the 0(1)(+) ground state and to the newly observed 0(2)(+) state [via a 607(2) keV transition] with a ratio R(2(1)(+)→0(1)(+)/2(1)(+)→0(2)(+))=1380(717). Gathering all information, a weak mixing with the 0(1)(+) and a large deformation parameter of ß=0.29(4) are found for the 0(2)(+) state, in good agreement with shell model calculations using a new SDPF-U-MIX interaction allowing np-nh excitations across the N=20 shell gap.

7.
Phys Rev Lett ; 105(10): 102501, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20867514

RESUMO

The structure of 44S has been studied by using delayed γ and electron spectroscopy. The decay rates of the 02+ isomeric state to the 2(1)+ and 0(1)+ states, measured for the first time, lead to a reduced transition probability B(E2: 2(1)+→0(2)+)=8.4(26) e(2) fm4 and a monopole strength ρ2(E0: 0(2)+→0(1)+)=8.7(7)×10(-3). Comparisons to shell model calculations point towards prolate-spherical shape coexistence, and a two-level mixing model is used to extract a weak mixing between the two configurations.

8.
Phys Rev Lett ; 102(16): 162503, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19518704

RESUMO

Six proton-emitting states in 19Ne were studied through the inelastic scattering reaction H(19Ne,p);{19}Ne; (p)18F. Their energies and widths were derived from the protons detected at zero degree, while proton-proton angular correlations between the detector at zero degree and a segmented annular detector were used to determine their spin value. In addition to the known states, a new broad J=1/2 resonance has been evidenced at E_{x} approximately 7.9 MeV, approximately 1.45 MeV above the proton emission threshold. By introducing this resonance, the 18F(p,alpha)15O destruction rate in novae is significantly enhanced. This reduces the chance to observe the cosmic gamma-ray emission of 18F from novae in space telescopes.

9.
Phys Rev Lett ; 99(2): 022503, 2007 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-17678217

RESUMO

The energies of the excited states in very neutron-rich (42)Si and (41,43)P have been measured using in-beam gamma-ray spectroscopy from the fragmentation of secondary beams of (42,44)S at 39A MeV. The low 2(+) energy of (42)Si, 770(19) keV, together with the level schemes of (41,43)P, provides evidence for the disappearance of the Z=14 and N=28 spherical shell closures, which is ascribed mainly to the action of proton-neutron tensor forces. New shell model calculations indicate that (42)Si is best described as a well-deformed oblate rotor.

10.
Phys Rev Lett ; 90(8): 082502, 2003 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-12633421

RESUMO

A new isomeric 0(+) state was identified as the first excited state in the self-conjugate (N=Z) nucleus 72Kr. By combining for the first time conversion-electron and gamma-ray spectroscopy with the production of metastable states in high-energy fragmentation, the electric-monopole decay of the new isomer to the ground state was established. The new 0(+) state is understood as the band head of the known prolate rotational structure, which strongly supports the interpretation that 72Kr is one of the rare nuclei having an oblate-deformed ground state. This observation gives in fact the first evidence for a shape isomer in a N=Z nucleus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA