Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 107: 105282, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39173527

RESUMO

BACKGROUND: Irritable bowel syndrome (IBS) is a common and debilitating disorder manifesting with abdominal pain and bowel dysfunction. A mainstay of treatment is dietary modification, including restriction of FODMAPs (fermentable oligosaccharides, disaccharides, monosaccharides and polyols). A greater response to a low FODMAP diet has been reported in those with a distinct IBS microbiome termed IBS-P. We investigated whether this is linked to specific changes in the metabolome in IBS-P. METHODS: Solid phase microextraction gas chromatography-mass spectrometry was used to examine the faecal headspace of 56 IBS cases (each paired with a non-IBS household control) at baseline, and after four-weeks of a low FODMAP diet (39 pairs). 50% cases had the IBS-P microbial subtype, while the others had a microbiome that more resembled healthy controls (termed IBS-H). Clinical response to restriction of FODMAPs was measured with the IBS-symptom severity scale, from which a pain sub score was calculated. FINDINGS: Two distinct metabotypes were identified and mapped onto the microbial subtypes. IBS-P was characterised by a fermentative metabolic profile rich in short chain fatty acids (SCFAs). After FODMAP restriction significant reductions in SCFAs were observed in IBS-P. SCFA levels did not change significantly in the IBS-H group. The magnitude of pain and overall symptom improvement were significantly greater in IBS-P compared to IBS-H (p = 0.016 and p = 0.026, respectively). Using just five metabolites, a biomarker model could predict microbial subtype with accuracy (AUROC 0.797, sensitivity 78.6% (95% CI: 0.78-0.94), specificity 71.4% (95% CI: 0.55-0.88). INTERPRETATION: A metabotype high in SCFAs can be manipulated by restricting fermentable carbohydrate, and is associated with an enhanced clinical response to this dietary restriction. This implies that SCFAs harbour pro-nociceptive potential when produced in a specific IBS niche. By ascertaining metabotype, microbial subtype can be predicted with accuracy. This could allow targeted FODMAP restriction in those seemingly primed to respond best. FUNDING: This research was co-funded by Addenbrooke's Charitable Trust, Cambridge University Hospitals and the Wellcome Sanger Institute, and supported by the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014).


Assuntos
Fezes , Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Síndrome do Intestino Irritável/dietoterapia , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/etiologia , Humanos , Fezes/microbiologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Metaboloma , Oligossacarídeos/metabolismo , Monossacarídeos/metabolismo , Monossacarídeos/análise , Fermentação , Metabolômica/métodos , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Dissacarídeos/metabolismo , Dissacarídeos/análise , Dieta FODMAP , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA