Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Exp Dent Res ; 10(4): e903, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39031165

RESUMO

OBJECTIVES: To explore the antimicrobial potential of strontium (Sr)-functionalized wafers against multiple bacteria associated with per-implant infections, in both mono- and multispecies biofilms. MATERIALS AND METHODS: The bactericidal and bacteriostatic effect of silicon wafers functionalized with a strontium titanium oxygen coating (Sr-Ti-O) or covered only with Ti (controls) against several bacteria, either grown as a mono-species or multispecies biofilms, was assessed using a bacterial viability assay and a plate counting method. Mono-species biofilms were assessed after 2 and 24 h, while the antimicrobial effect on multispecies biofilms was assessed at Days 1, 3, and 6. The impact of Sr functionalization on the total percentage of Porphyromonas gingivalis in the multispecies biofilm, using qPCR, and gingipain activity was also assessed. RESULTS: Sr-functionalized wafers, compared to controls, were associated with statistically significant less viable cells in both mono- and multispecies tests. The number of colony forming units (CFUs) within the biofilm was significantly less in Sr-functionalized wafers, compared to control wafers, for Staphylococcus aureus at all time points of evaluation and for Escherichia coli at Day 1. Gingipain activity was less in Sr-functionalized wafers, compared to control wafers, and the qPCR showed that P. gingivalis remained below detection levels at Sr-functionalized wafers, while it consisted of 15% of the total biofilm on control wafers at Day 6. CONCLUSION: Sr functionalization displayed promising antimicrobial potential, possessing bactericidal and bacteriostatic ability against bacteria associated with peri-implantitis grown either as mono-species or mixed in a multispecies consortium with several common oral microorganisms.


Assuntos
Biofilmes , Peri-Implantite , Porphyromonas gingivalis , Estrôncio , Titânio , Titânio/química , Titânio/farmacologia , Biofilmes/efeitos dos fármacos , Peri-Implantite/microbiologia , Peri-Implantite/tratamento farmacológico , Estrôncio/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Viabilidade Microbiana/efeitos dos fármacos , Implantes Dentários/microbiologia
2.
Biosens Bioelectron ; 246: 115892, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056343

RESUMO

Since the progression of biofilm formation is related to the success of infection treatment, detecting microbial biofilms is of great interest. Biofilms of Gram-positive Staphylococcus aureus and Streptococcus gordonii bacteria, Gram-negative Pseudomonas aeruginosa and Escherichia coli bacteria, and Candida albicans yeast were examined using potentiometric, amperometric, and wireless readout modes in this study. As a biofilm formed, the open circuit potential (OCP) of biofilm hosting electrode (bioanode) became increasingly negative. Depending on the microorganism, the OCP ranged from -70 to -250 mV. The co-culture generated the most negative OCP (-300 mV vs Ag/AgCl), while the single-species biofilm formed by E. coli developed the least negative (-70 mV). The OCP of a fungal biofilm formed by C. albicans was -100 mV. The difference in electrode currents generated by biofilms was more pronounced. The current density of the S. aureus biofilm was 0.9‧10-7 A cm-2, while the value of the P. aeruginosa biofilm was 1.3‧10-6 A cm-2. Importantly, a biofilm formed by a co-culture of S. aureus and P. aeruginosa had a slightly higher negative OCP value and current density than the most electrogenic P. aeruginosa single-species biofilm. We present evidence that bacteria can share redox mediators found in multi-species biofilms. This synergy, enabling higher current and OCP values of multi-species biofilm hosting electrodes, could be beneficial for electrochemical detection of infectious biofilms in clinics. We demonstrate that the electrogenic biofilm can provide basis to construct novel wireless, chip-free, and battery-free biofilm detection method.


Assuntos
Técnicas Biossensoriais , Staphylococcus aureus , Escherichia coli , Biofilmes , Candida albicans , Pseudomonas aeruginosa
3.
Angew Chem Int Ed Engl ; 62(40): e202308181, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37490019

RESUMO

Biofilm-associated infections, which are able to resist antibiotics, pose a significant challenge in clinical treatments. Such infections have been linked to various medical conditions, including chronic wounds and implant-associated infections, making them a major public-health concern. Early-detection of biofilm formation offers significant advantages in mitigating adverse effects caused by biofilms. In this work, we aim to explore the feasibility of employing a novel wireless sensor for tracking both early-stage and matured-biofilms formed by the medically relevant bacteria Staphylococcus aureus and Pseudomonas aeruginosa. The sensor utilizes electrochemical reduction of an AgCl layer bridging two silver legs made by inkjet-printing, forming a part of near-field-communication tag antenna. The antenna is interfaced with a carbon cloth designed to promote the growth of microorganisms, thereby serving as an electron source for reduction of the resistive AgCl into a highly-conductive Ag bridge. The AgCl-Ag transformation significantly alters the impedance of the antenna, facilitating wireless identification of an endpoint caused by microbial growth. To the best of our knowledge, this study for the first time presents the evidence showcasing that electrons released through the actions of bacteria can be harnessed to convert AgCl to Ag, thus enabling the wireless, battery-less, and chip-less early-detection of biofilm formation.


Assuntos
Biofilmes , Staphylococcus aureus , Antibacterianos/farmacologia , Bactérias , Pseudomonas aeruginosa
4.
ACS Omega ; 8(17): 15259-15265, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37151489

RESUMO

Periodontitis (gum disease) is a common biofilm-mediated oral condition, with around 7% of the adult population suffering from severe disease with risk for tooth loss. Moreover, periodontitis virulence markers have been found in atherosclerotic plaque and brain tissue, suggesting a link to cardiovascular and Alzheimer's diseases. The lack of accurate, fast, and sensitive clinical methods to identify patients at risk leads, on the one hand, to patients being undiagnosed until the onset of severe disease and, on the other hand, to overtreatment of individuals with mild disease, diverting resources from those patients most in need. The periodontitis-associated bacterium, Porphyromonas gingivalis, secrete gingipains which are highly active proteases recognized as key virulence factors during disease progression. This makes them interesting candidates as predictive biomarkers, but currently, there are no methods in clinical use for monitoring them. Quantifying the levels or proteolytic activity of gingipains in the periodontal pocket surrounding the teeth could enable early-stage disease diagnosis. Here, we report on a monitoring approach based on high-affinity microcontact imprinted polymer-based receptors for the Arg and Lys specific gingipains Rgp and Kgp and their combination with surface plasmon resonance (SPR)-based biosensor technology for quantifying gingipain levels in biofluids and patient samples. Therefore, Rgp and Kgp were immobilized on glass coverslips followed by microcontact imprinting of poly-acrylamide based films anchored to gold sensor chips. The monomers selected were N-isopropyl acrylamide (NIPAM), N-hydroxyethyl acrylamide (HEAA) and N-methacryloyl-4-aminobenzamidine hydrochloride (BAM), with N,N'-methylene bis(acrylamide) (BIS) as the crosslinker. This resulted in imprinted surfaces exhibiting selectivity towards their templates high affinity and selectivity for the templated proteins with dissociation constants (K d) of 159 and 299 nM for the Rgp- and Kgp-imprinted, surfaces respectively. The former surface displayed even higher affinity (K d = 71 nM) when tested in dilute cell culture supernatants. Calculated limits of detection for the sensors were 110 and 90 nM corresponding to levels below clinically relevant concentrations.

5.
Methods Mol Biol ; 2674: 33-54, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258958

RESUMO

The oral microbiota, which is known to include at least 600 different bacterial species, is found on the teeth and mucosal surfaces as multi-species communities or biofilms. The oral surfaces are covered with a pellicle of proteins absorbed from saliva, and biofilm formation is initiated when primary colonizers, which express surface adhesins that bind to specific salivary components, attach to the oral tissues. Further development then proceeds through co-aggregation of additional species. Over time, the composition of oral biofilms, which varies between different sites throughout the oral cavity, is determined by a combination of environmental factors such as the properties of the underlying surface, nutrient availability and oxygen levels, and bacterial interactions within the community. A complex equilibrium between biofilm communities and the host is responsible for the maintenance of a healthy biofilm phenotype (eubiosis). In the face of sustained environmental perturbation, however, biofilm homeostasis can break down giving rise to dysbiosis, which is associated with the development of oral diseases such as caries and periodontitis.In vitro models have an important part to play in increasing our understanding of the complex processes involved in biofilm development in oral health and disease, and the requirements for experimental system, microbial complexity, and analysis techniques will necessarily vary depending on the question posed. In this chapter we describe some current and well-established methods used in our laboratory for studying oral bacteria in biofilm models which can be adapted to suit the needs of individual users.


Assuntos
Biofilmes , Periodontite , Humanos , Saliva , Periodontite/microbiologia , Adesinas Bacterianas , Bactérias
6.
ACS Sens ; 7(4): 1222-1234, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35392657

RESUMO

To maximize the potential of 5G infrastructure in healthcare, simple integration of biosensors with wireless tag antennas would be beneficial. This work introduces novel glucose-to-resistor transduction, which enables simple, wireless biosensor design. The biosensor was realized on a near-field communication tag antenna, where a sensing bioanode generated electrical current and electroreduced a nonconducting antenna material into an excellent conductor. For this, a part of the antenna was replaced by a Ag nanoparticle layer oxidized to high-resistance AgCl. The bioanode was based on Au nanoparticle-wired glucose dehydrogenase (GDH). The exposure of the cathode-bioanode to glucose solution resulted in GDH-catalyzed oxidation of glucose at the bioanode with a concomitant reduction of AgCl to highly conducting Ag on the cathode. The AgCl-to-Ag conversion strongly affected the impedance of the antenna circuit, allowing wireless detection of glucose. Mimicking the final application, the proposed wireless biosensor was ultimately evaluated through the measurement of glucose in whole blood, showing good agreement with the values obtained with a commercially available glucometer. This work, for the first time, demonstrates that making a part of the antenna from the AgCl layer allows achieving simple, chip-less, and battery-less wireless sensing of enzyme-catalyzed reduction reaction.


Assuntos
Fontes de Energia Bioelétrica , Nanopartículas Metálicas , Glucose/química , Ouro , Prata
7.
Microb Pathog ; 162: 104648, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33242642

RESUMO

BACKGROUND: Periodontitis is a chronic inflammation resulting in destruction of tooth-supporting bone. Chronic inflammation is characterized by extravascular fibrin deposition. Fibrin is central to destruction of bone; monocytes bind to fibrin and form osteoclasts, thus providing a link between coagulation and the tissue destructive processes in periodontitis. The oral microbiome is essential to oral health. However, local ecological changes, such as increased biofilm formation, result in a dysbiotic microbiome characterized by an increase of protease-producing species e.g. Porphyromonas gingivalis. Proteases initiate inflammation and may cleave coagulation factors. Polyphosphates (polyP) may also provide bacteria with procoagulant properties similar to platelet-released polyP. P. gingivalis has also been found in remote locations related to vascular pathology and Alzheimer's disease. OBJECTIVES: The aim of this study was to investigate procoagulant activity of ten different species of oral bacteria present in oral health and disease as well as presence of polyP and fibrin formation in planktonic and biofilm bacteria. METHODS: Oral bacteria were studied for protease production and procoagulant activity. The presence of polyP and formation of fibrin was observed using confocal microscopy. RESULTS: P. gingivalis showed strong protease activity and was the only species exerting procoagulant activity. Confocal microscopy showed polyP intracellularly in planktonic bacteria and extracellularly after biofilm formation. Fibrin formation emanated from planktonic bacteria and from both bacteria and polyP in biofilm cultures. CONCLUSIONS: The procoagulant activity of P. gingivalis could explain its role in chronic inflammation, locally in oral tissues as well as in remote locations.


Assuntos
Periodontite , Porphyromonas gingivalis , Biofilmes , Humanos , Inflamação , Plâncton , Polifosfatos
8.
BMC Oral Health ; 21(1): 639, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911531

RESUMO

BACKGROUND: Dysbiosis in subgingival microbial communities, resulting from increased inflammatory transudate from the gingival tissues, is an important factor in initiation and development of periodontitis. Dysbiotic communities are characterized by increased numbers of bacteria that exploit the serum-like transudate for nutrients, giving rise to a proteolytic community phenotype. Here we investigate the contribution of interactions between members of a sub-gingival community to survival and development of virulence in a serum environment-modelling that in the subgingival pocket. METHODS: Growth and proteolytic activity of three Porphyromonas gingivalis strains in nutrient broth or a serum environment were assessed using A600 and a fluorescent protease substrate, respectively. Adherence of P. gingivalis strains to serum-coated surfaces was studied with confocal microscopy and 2D-gel electrophoresis of bacterial supernatants used to investigate extracellular proteins. A model multi-species sub-gingival community containing Fusobacterium nucleatum, Streptococcus constellatus, Parvimonas micra with wild type or isogenic mutants of P. gingivalis was then created and growth and proteolytic activity in serum assessed as above. Community composition over time was monitored using culture techniques and qPCR. RESULTS: The P. gingivalis strains showed different growth rates in nutrient broth related to the level of proteolytic activity (largely gingipains) in the cultures. Despite being able to adhere to serum-coated surfaces, none of the strains was able to grow alone in a serum environment. Together in the subgingival consortium however, all the included species were able to grow in the serum environment and the community adopted a proteolytic phenotype. Inclusion of P. gingivalis strains lacking gingipains in the consortium revealed that community growth was facilitated by Rgp gingipain from P. gingivalis. CONCLUSIONS: In the multi-species consortium, growth was facilitated by the wild-type and Rgp-expressing strains of P. gingivalis, suggesting that Rgp is involved in delivery of nutrients to the whole community through degradation of complex protein substrates in serum. Whereas they are constitutively expressed by P. gingivalis in nutrient broth, gingipain expression in the model periodontal pocket environment (serum) appeared to be orchestrated through signaling to P. gingivalis from other members of the community, a phenomenon which then promoted growth of the whole community.


Assuntos
Adesinas Bacterianas , Porphyromonas gingivalis , Cisteína Endopeptidases , Fusobacterium nucleatum , Cisteína Endopeptidases Gingipaínas
9.
Front Cell Infect Microbiol ; 11: 716493, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395316

RESUMO

Supragingival dental plaque samples were collected from 40 Swedish adolescents, including 20 with caries lesions (CAR) and 20 caries-free (CF). Fresh plaque samples were subjected to an ex vivo acid tolerance (AT) test where the proportion of bacteria resistant to an acid shock was evaluated through confocal microscopy and live/dead staining, and the metabolites produced were quantified by 1H Nuclear Magnetic Resonance (1H NMR). In addition, DNA was extracted and the 16S rRNA gene was sequenced by Illumina sequencing, in order to characterize bacterial composition in the same samples. There were no significant differences in AT scores between CAR and CF individuals. However, 7 out of the 10 individuals with highest AT scores belonged to the CAR group. Regarding bacterial composition, Abiotrophia, Prevotella and Veillonella were found at significantly higher levels in CAR individuals (p=0.0085, 0.026 and 0.04 respectively) and Rothia and Corynebacterium at significantly higher levels in CF individuals (p=0.026 and 0.003). The caries pathogen Streptococcus mutans was found at low frequencies and was absent in 60% of CAR individuals. Random-forest predictive models indicate that at least 4 bacterial species or 9 genera are needed to distinguish CAR from CF adolescents. The metabolomic profile obtained by NMR showed a significant clustering of organic acids with specific bacteria in CAR and/or high AT individuals, being Scardovia wiggsiae the species with strongest associations. A significant clustering of ethanol and isopropanol with health-associated bacteria such as Rothia or Corynebacterium was also found. Accordingly, several relationships involving these compounds like the Ethanol : Lactate or Succinate : Lactate ratios were significantly associated to acid tolerance and could be of predictive value for caries risk. We therefore propose that future caries risk studies would benefit from considering not only the use of multiple organisms as potential microbial biomarkers, but also their functional adaptation and metabolic output.


Assuntos
Cárie Dentária , Placa Dentária , Microbiota , Actinobacteria , Adolescente , Humanos , Metabolômica , RNA Ribossômico 16S/genética , Streptococcus mutans/genética
10.
Antibiotics (Basel) ; 10(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546189

RESUMO

Background: Peri-implantitis due to infection of dental implants is a common complication that may cause significant patient morbidity. In this study, we investigated the antimicrobial potential of Sr(OH)2 against different bacteria associated with peri-implantitis. Methods: The antimicrobial potential of five concentrations of Sr(OH)2 (100, 10, 1, 0.1, and 0.01 mM) was assessed with agar diffusion test, minimal inhibitory concentration (MIC), and biofilm viability assays against six bacteria commonly associated with biomaterial infections: Streptococcus mitis, Staphylococcus epidermidis, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Escherichia coli, and Fusobacterium nucleatum. Results: Zones of inhibition were only observed for, 0.01, 0.1, and 1 mM of Sr(OH)2 tested against P. gingivalis, in the agar diffusion test. Growth inhibition in planktonic cultures was achieved at 10 mM for all species tested (p < 0.001). In biofilm viability assay, 10 and 100 mM Sr(OH)2 showed potent bactericidal affect against S. mitis, S. epidermidis, A. actinomycetemcomitans, E. coli, and P. gingivalis. Conclusions: The findings of this study indicate that Sr(OH)2 has antimicrobial properties against bacteria associated with peri-implantitis.

11.
BMC Microbiol ; 21(1): 45, 2021 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33583397

RESUMO

BACKGROUND: In caries, low pH drives selection and enrichment of acidogenic and aciduric bacteria in oral biofilms, and development of acid tolerance in early colonizers is thought to play a key role in this shift. Since previous studies have focussed on planktonic cells, the effect of biofilm growth as well as the role of a salivary pellicle on this process is largely unknown. We explored acid tolerance and acid tolerance response (ATR) induction in biofilm cells of both clinical and laboratory strains of three oral streptococcal species (Streptococcus gordonii, Streptococcus oralis and Streptococcus mutans) as well as two oral species of Actinomyces (A. naeslundii and A. odontolyticus) and examined the role of salivary proteins in acid tolerance development. METHODS: Biofilms were formed on surfaces in Ibidi® mini flow cells with or without a coating of salivary proteins and acid tolerance assessed by exposing them to a challenge known to kill non-acid tolerant cells (pH 3.5 for 30 min) followed by staining with LIVE/DEAD BacLight and confocal scanning laser microscopy. The ability to induce an ATR was assessed by exposing the biofilms to an adaptation pH (pH 5.5) for 2 hours prior to the low pH challenge. RESULTS: Biofilm formation significantly increased acid tolerance in all the clinical streptococcal strains (P < 0.05) whereas the laboratory strains varied in their response. In biofilms, S. oralis was much more acid tolerant than S. gordonii or S. mutans. A. naeslundii showed a significant increase in acid tolerance in biofilms compared to planktonic cells (P < 0.001) which was not seen for A. odontolyticus. All strains except S. oralis induced an ATR after pre-exposure to pH 5.5 (P < 0.05). The presence of a salivary pellicle enhanced both acid tolerance development and ATR induction in S. gordonii biofilms (P < 0.05) but did not affect the other bacteria to the same extent. CONCLUSIONS: These findings suggest that factors such as surface contact, the presence of a salivary pellicle and sensing of environmental pH can contribute to the development of high levels of acid tolerance amongst early colonizers in oral biofilms which may be important in the initiation of caries.


Assuntos
Ácidos/metabolismo , Biofilmes/crescimento & desenvolvimento , Boca/microbiologia , Streptococcus/crescimento & desenvolvimento , Streptococcus/metabolismo , Ácidos/farmacologia , Adaptação Fisiológica , Biofilmes/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Proteínas e Peptídeos Salivares/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus/efeitos dos fármacos
12.
Clin Implant Dent Relat Res ; 21 Suppl 1: 55-68, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30859691

RESUMO

BACKGROUND: A newly developed, anodized titanium oxide surface containing anatase has been reported to have antimicrobial properties that could reduce bacterial adherence to abutments. PURPOSE: To investigate if abutments with the anodized surface improve healing and soft tissue health in a randomized controlled study. MATERIALS AND METHODS: Test abutments with a nanostructured anodized surface were compared with control machined titanium abutments. In total, 35 subjects each received a pair of test and control abutments. The primary endpoint was reduction of biofilm formation at test abutments at the 6-week follow-up. Secondary endpoints included several soft tissue assessments. qPCR for gene markers was used to indirectly evaluate healing and soft tissue health. RESULTS: No significant differences in biofilm formation were observed between test and control abutments, but soft tissue bleeding upon abutment removal was significantly lower for test abutments compared with control abutments (P = 0.006) at 6 weeks. Keratinized mucosa height was significantly greater at test abutments compared with control abutments at the 6-week, 6-month, and 2-year follow-ups. Significant gene expression differences indicated differences in healing and tissue remodeling. CONCLUSIONS: Abutments with an anodized and nanostructured surface compared with a conventional, machined titanium surface had no significant effect on bacterial colonization and proteolytic activity but were associated with better soft tissue outcomes such as a lower bleeding index at abutment removal and consistently greater height of keratinized mucosa throughout the 2-year follow-up, suggesting improved surface-dependent peri-implant healing and soft tissue health.


Assuntos
Dente Suporte , Titânio , Cicatrização , Gengiva , Humanos , Propriedades de Superfície , Dente , Zircônio
13.
Acta Odontol Scand ; 77(4): 315-327, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30727798

RESUMO

OBJECTIVE: To evaluate effects of thresholds on estimates of predictive accuracy of methods for caries risk assessment. MATERIAL AND METHODS: Adolescents, aged 12 visiting two dental clinics, were examined by visual/tactile examination and bitewing radiography at baseline and after one year. Three methods for caries risk assessment were applied: previous caries experience, dentists' risk assessment according to set criteria (presence or absence of caries lesion) and acid tolerance of dental biofilm. The measure for validity (the reference standard) comprised caries lesion progression at 1 year. Predictive accuracy estimates were calculated for several thresholds. RESULTS: Accuracy estimates changed with threshold values of the methods and the reference standard. Patient spectrum differed between the clinics, which resulted in different accuracy estimates for the two samples. Generally, negative predictive values were high while positive ones were low indicating that these methods were more efficient in finding individuals who are at low risk of developing caries lesions than those with increased risk. CONCLUSIONS: As thresholds and patient spectrum affected predictive accuracy, it may be difficult to design a universal model with set thresholds for caries risk assessment. Foremost, a model should consider the level of aspiration for prediction and clinical decisions that will be made based on the risk assessment in the actual clinical setting.


Assuntos
Suscetibilidade à Cárie Dentária , Cárie Dentária/diagnóstico , Restauração Dentária Permanente/estatística & dados numéricos , Adolescente , Cárie Dentária/classificação , Cárie Dentária/microbiologia , Odontólogos , Feminino , Humanos , Masculino , Exame Físico , Radiografia Interproximal , Medição de Risco/métodos
14.
Anaerobe ; 55: 54-60, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30359695

RESUMO

Dental biofilms are complex ecosystems containing many bacterial species that live in mutualistic relationships. These interactions can profoundly affect the virulence properties of the community. In this study we investigated how the production of gingipains, virulence factors from Porphyromonas gingivalis important in periodontal disease, was affected by other commonly found members of the sub-gingival microbiome. To mimic the subgingival microbiome, multispecies consortia (P. gingivalis, Fusobacterium nucleatum, Actinomyces naeslundii, Streptococus oralis, Streptococcus mitis, Streptococcus gordonii and Streptococcus cristatus, with or without Parvimonas micra) as well as dual species consortia (P. gingivalis with P. micra, S. oralis or F. nucleatum) were constructed and maintained anaerobically in 10% serum for up to seven days. The number of P. gingivalis was determined by plating on Brucella agar and the gingipain specific fluorogenic substrate BikKam-10 was used to investigate gingipain activity. The effect of secreted products from P. micra on gingipain activity was investigated by adding supernatants from P. micra to P. gingivalis cultures. The most prominent secreted proteins in the supernatant were identified using mass spectrometry. P. gingivalis was unable to grow in serum, either alone or in the presence of S. oralis or F. nucleatum. In contrast, with P. micra growth was significantly enhanced and this was associated with an increase in gingipain activity. In the multi-species consortia, the presence of P. micra caused a 13-fold increase in gingipain activity. Exposure of P. gingivalis to supernatants from P. micra for 24 h caused a 3-fold increase in gingipain activity. This effect was reduced by 43% after heat-treatment of the supernatant. Two dimensional gel electrophoresis revealed that several of the most prominent proteins in the P. micra supernatant were glycolytic enzymes. The results from this study suggests that gingipains are produced in response to a P. micra derived signalling molecule that is most likely a protein. This is the first time it has been shown that P. micra can affect P. gingivalis virulence properties. This is likely to be of significance for the development of be of periodontitis since these two microorganisms are often found together in the subgingival biofilm.


Assuntos
Adesinas Bacterianas/metabolismo , Cisteína Endopeptidases/metabolismo , Firmicutes/crescimento & desenvolvimento , Consórcios Microbianos , Interações Microbianas , Porphyromonas gingivalis/metabolismo , Anaerobiose , Carga Bacteriana , Contagem de Colônia Microbiana , Meios de Cultura , Cisteína Endopeptidases Gingipaínas , Humanos , Porphyromonas gingivalis/crescimento & desenvolvimento , Soro/microbiologia , Fatores de Virulência/metabolismo
15.
Caries Res ; 52(1-2): 7-13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29232659

RESUMO

Dental biofilms are formed in a multistep process that is initiated by the adhesion of oral bacteria to the dental hard surface. As dental biofilms are associated with oral diseases their control is necessary in order to maintain oral health. Recently, it was revealed that phytosphingosine (PHS)-treated hydroxyapatite discs showed anti-adhesive activity in a static in vitro biofilm model against Streptococcus mutans. The goal of the present study was to further unravel the anti-adhesive and anti-biofilm properties of PHS in both static and dynamic in vitro biofilm models against a full salivary inoculum. After 3 h under static conditions, bacterial adherence on PHS-treated cover glass slides was reduced by 60% compared to the untreated surface. After 6 and 24 h under static conditions, no significant differences in bacterial adherence were observed between PHS-treated and untreated cover glass slides. However, under dynamic conditions, i.e., the presence of shear forces, virtually no bacterial adherence was observed for up to 16 h on PHS-coated surfaces. Besides, PHS showed a strong bactericidal activity on salivary biofilms. Treatment of a 3- and 6-h statically grown biofilm resulted in a 99 and 94% reduction of viable cells, respectively, which was effectuated within minutes. In principle, these anti-adherence and anti-biofilm properties make PHS a promising candidate ingredient for use in oral care products aimed at oral microbial control.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Saliva/microbiologia , Esfingosina/análogos & derivados , Adulto , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Humanos , Técnicas In Vitro , Masculino , Saliva/efeitos dos fármacos , Esfingosina/farmacologia
16.
Arch Oral Biol ; 70: 1-8, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27295389

RESUMO

OBJECTIVE: The aim of this study was to investigate the ability of the serine protease inhibitor plasminogen activator inhibitor type 2 (PAI-2/Serpin B2) to inhibit proteases produced by a multispecies bacterial consortium in vitro. BACKGROUND: Gingival and periodontal inflammation is associated with an increased flow of protein-rich gingival fluid. This nutritional change in the microenvironment favors bacteria with a proteolytic phenotype, triggering inflammation and associated tissue breakdown. PAI-2 is produced by macrophages and keratinocytes and is present in very high concentrations in gingival crevicular fluid; the highest level in the body. DESIGN: A multispecies bacterial consortium comprising nine bacterial strains, resembling the conditions in a periodontal pocket, was grown planktonically and as a biofilm. After seven days PAI-2 was added to the consortium and the proteolytic activity was assayed with fluorogenic protease substrates; FITC-labeled casein to detect global protease activity, fluorescent H-Gly-Pro-AMC for serine protease activity and fluorescent BIKKAM-10 for Porphyromonas gingivalis-associated protease activity. Protease activity associated with biofilm cells was examined by confocal scanning laser microscopy. RESULTS: PAI-2 inhibited proteolytic activity of the bacterial consortium, as seen by decreased fluorescence of all substrates. PAI-2 specifically inhibited P. gingivalis proteolytic activity. CONCLUSION: To our knowledge, this is the first time that PAI-2 has been shown to inhibit bacterial proteases. Given the high concentration of PAI-2 in the gingival region, our results indicate that PAI-2 might play a role for the integrity of the epithelial barrier.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Peptídeo Hidrolases/efeitos dos fármacos , Inibidor 2 de Ativador de Plasminogênio/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Porphyromonas gingivalis/enzimologia , Inibidores de Proteases/farmacologia , Carga Bacteriana , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Ativação Enzimática , Gengiva/microbiologia , Líquido do Sulco Gengival/química , Líquido do Sulco Gengival/enzimologia , Gengivite/enzimologia , Gengivite/metabolismo , Gengivite/microbiologia , Imunidade nas Mucosas , Consórcios Microbianos/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Bolsa Periodontal/enzimologia , Bolsa Periodontal/metabolismo , Bolsa Periodontal/microbiologia , Porphyromonas gingivalis/genética
17.
Arch Oral Biol ; 59(3): 318-23, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24581855

RESUMO

OBJECTIVE: To investigate the effect of delmopinol and fluoride alone or in combination on acid adaptation and acid production in plaque biofilm bacteria in vitro. DESIGN: The effect of delmopinol and fluoride on acid adaptation was tested by exposing the biofilm bacteria, grown in a mini-flow cell system under static conditions, to pH 5.5 overnight in the presence of 0.16 mM delmopinol, 1 mF NaF or a combination of both. The following day, acid adaptation was evaluated by exposing the cells to an acid challenge for 2h at a pH known to kill non-adapted cells (pH 2.5). The cells were stained using LIVE/DEAD BacLight Viability stain and the number of viable (acid tolerant) cells was determined using confocal scanning laser microscopy. Control cells were treated in the same manner but without the exposure to delmopinol or fluoride. How delmopinol and fluoride affected acid production was assessed by measuring the pH-drop after glucose pulsing in the presence of delmopinol and/or different concentrations of fluoride. RESULTS: Fluoride alone or in combination with delmopinol affected the acid adaptation and significantly reduced the acid tolerance of the plaque biofilm. This effect was more pronounced when the two compounds were combined. Delmopinol alone did not affect acid adaptation. A combination of delmopinol and fluoride also reduced acid production at concentrations where neither of the compounds in isolation had an effect. CONCLUSION: Fluoride and delmopinol can work synergistically to affect acid adaptation and acid production in plaque biofilm bacteria.


Assuntos
Biofilmes/efeitos dos fármacos , Cariostáticos/farmacologia , Placa Dentária/prevenção & controle , Morfolinas/farmacologia , Fluoreto de Sódio/farmacologia , Tensoativos/farmacologia , Ácidos , Adaptação Fisiológica , Placa Dentária/microbiologia , Glucose/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Microscopia Confocal
18.
Appl Environ Microbiol ; 73(17): 5633-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17630302

RESUMO

Streptococcus mutans, a member of the dental plaque community, has been shown to be involved in the carious process. Cells of S. mutans induce an acid tolerance response (ATR) when exposed to sublethal pH values that enhances their survival at a lower pH. Mature biofilm cells are more resistant to acid stress than planktonic cells. We were interested in studying the acid tolerance and ATR-inducing ability of newly adhered biofilm cells of S. mutans. All experiments were carried out using flow-cell systems, with acid tolerance tested by exposing 3-h biofilm cells to pH 3.0 for 2 h and counting the number of survivors by plating on blood agar. Acid adaptability experiments were conducted by exposing biofilm cells to pH 5.5 for 3 h and then lowering the pH to 3.5 for 30 min. The viability of the cells was assessed by staining the cells with LIVE/DEAD BacLight viability stain. Three-hour biofilm cells of three different strains of S. mutans were between 820- and 70,000-fold more acid tolerant than corresponding planktonic cells. These strains also induced an ATR that enhanced the viability at pH 3.5. The presence of fluoride (0.5 M) inhibited the induction of an ATR, with 77% fewer viable cells at pH 3.5 as a consequence. Our data suggest that adhesion to a surface is an important step in the development of acid tolerance in biofilm cells and that different strains of S. mutans possess different degrees of acid tolerance and ability to induce an ATR.


Assuntos
Ácidos/farmacologia , Biofilmes/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/crescimento & desenvolvimento , Adaptação Fisiológica , Biofilmes/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Meios de Cultura , Resposta ao Choque Térmico , Humanos , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA