Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Front Oncol ; 14: 1367450, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606105

RESUMO

The DNAJB1-PRKACA fusion transcript was identified as the oncogenic driver of tumor pathogenesis in fibrolamellar hepatocellular carcinoma (FL-HCC), also known as fibrolamellar carcinoma (FLC), as well as in other tumor entities, thus representing a broad target for novel treatment in multiple cancer entities. FL-HCC is a rare primary liver tumor with a 5-year survival rate of only 45%, which typically affects young patients with no underlying primary liver disease. Surgical resection is the only curative treatment option if no metastases are present at diagnosis. There is no standard of care for systemic therapy. Peptide-based vaccines represent a low side-effect approach relying on specific immune recognition of tumor-associated human leucocyte antigen (HLA) presented peptides. The induction (priming) of tumor-specific T-cell responses against neoepitopes derived from gene fusion transcripts by peptide-vaccination combined with expansion of the immune response and optimization of immune function within the tumor microenvironment achieved by immune-checkpoint-inhibition (ICI) has the potential to improve response rates and durability of responses in malignant diseases. The phase I clinical trial FusionVAC22_01 will enroll patients with FL-HCC or other cancer entities carrying the DNAJB1-PRKACA fusion transcript that are locally advanced or metastatic. Two doses of the DNAJB1-PRKACA fusion-based neoepitope vaccine Fusion-VAC-XS15 will be applied subcutaneously (s.c.) with a 4-week interval in combination with the anti-programmed cell death-ligand 1 (PD-L1) antibody atezolizumab starting at day 15 after the first vaccination. Anti-PD-L1 will be applied every 4 weeks until end of the 54-week treatment phase or until disease progression or other reason for study termination. Thereafter, patients will enter a 6 months follow-up period. The clinical trial reported here was approved by the Ethics Committee II of the University of Heidelberg (Medical faculty of Mannheim) and the Paul-Ehrlich-Institute (P-00540). Clinical trial results will be published in peer-reviewed journals. Trial registration numbers: EU CT Number: 2022-502869-17-01 and ClinicalTrials.gov Registry (NCT05937295).

2.
Blood Adv ; 8(3): 712-724, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38127299

RESUMO

ABSTRACT: Human cytomegalovirus (HCMV) reactivation poses a substantial risk to patients receiving tranplants. Effective risk stratification and vaccine development is hampered by a lack of HCMV-derived immunogenic peptides in patients with common HLA-A∗03:01 and HLA-B∗15:01 haplotypes. This study aimed to discover novel HCMV immunogenic peptides for these haplotypes by combining ribosome sequencing (Ribo-seq) and mass spectrometry with state-of-the-art computational tools, Peptide-PRISM and Probabilistic Inference of Codon Activities by an EM Algorithm. Furthermore, using machine learning, an algorithm was developed to predict immunogenicity based on translational activity, binding affinity, and peptide localization within small open reading frames to identify the most promising peptides for in vitro validation. Immunogenicity of these peptides was subsequently tested by analyzing peptide-specific T-cell responses of HCMV-seropositive and -seronegative healthy donors as well as patients with transplants. This resulted in the direct identification of 3 canonical and 1 cryptic HLA-A∗03-restricted immunogenic peptides as well as 5 canonical and 1 cryptic HLA-B∗15-restricted immunogenic peptide, with a specific interferon gamma-positive (IFN-γ+)/CD8+ T-cell response of ≥0.02%. High T-cell responses were detected against 2 HLA-A∗03-restricted and 3 HLA-B∗15-restricted canonical peptides with frequencies of up to 8.77% IFN-γ+/CD8+ T cells in patients after allogeneic stem cell transplantation. Therefore, our comprehensive strategy establishes a framework for efficient identification of novel immunogenic peptides from both existing and novel Ribo-seq data sets.


Assuntos
Citomegalovirus , Epitopos de Linfócito T , Humanos , Peptídeos , Antígenos HLA-B , Antígenos HLA-A
3.
Nat Commun ; 14(1): 7472, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978195

RESUMO

T cell recognition of human leukocyte antigen (HLA)-presented tumor-associated peptides is central for cancer immune surveillance. Mass spectrometry (MS)-based immunopeptidomics represents the only unbiased method for the direct identification and characterization of naturally presented tumor-associated peptides, a key prerequisite for the development of T cell-based immunotherapies. This study reports on the implementation of ion mobility separation-based time-of-flight (TOFIMS) MS for next-generation immunopeptidomics, enabling high-speed and sensitive detection of HLA-presented peptides. Applying TOFIMS-based immunopeptidomics, a novel extensive benignTOFIMS dataset was generated from 94 primary benign samples of solid tissue and hematological origin, which enabled the expansion of benign reference immunopeptidome databases with > 150,000 HLA-presented peptides, the refinement of previously described tumor antigens, as well as the identification of frequently presented self antigens and not yet described tumor antigens comprising low abundant mutation-derived neoepitopes that might serve as targets for future cancer immunotherapy development.


Assuntos
Antígenos de Histocompatibilidade Classe I , Neoplasias , Humanos , Antígenos de Neoplasias , Espectrometria de Massas/métodos , Antígenos HLA , Neoplasias/terapia , Peptídeos/química , Antígenos de Histocompatibilidade Classe II
4.
Blood Cancer Discov ; 4(6): 468-489, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847741

RESUMO

Therapy-resistant leukemia stem and progenitor cells (LSC) are a main cause of acute myeloid leukemia (AML) relapse. LSC-targeting therapies may thus improve outcome of patients with AML. Here we demonstrate that LSCs present HLA-restricted antigens that induce T-cell responses allowing for immune surveillance of AML. Using a mass spectrometry-based immunopeptidomics approach, we characterized the antigenic landscape of patient LSCs and identified AML- and AML/LSC-associated HLA-presented antigens absent from normal tissues comprising nonmutated peptides, cryptic neoepitopes, and neoepitopes of common AML driver mutations of NPM1 and IDH2. Functional relevance of shared AML/LSC antigens is illustrated by presence of their cognizant memory T cells in patients. Antigen-specific T-cell recognition and HLA class II immunopeptidome diversity correlated with clinical outcome. Together, these antigens shared among AML and LSCs represent prime targets for T cell-based therapies with potential of eliminating residual LSCs in patients with AML. SIGNIFICANCE: The elimination of therapy-resistant leukemia stem and progenitor cells (LSC) remains a major challenge in the treatment of AML. This study identifies and functionally validates LSC-associated HLA class I and HLA class II-presented antigens, paving the way to the development of LSC-directed T cell-based immunotherapeutic approaches for patients with AML. See related commentary by Ritz, p. 430 . This article is featured in Selected Articles from This Issue, p. 419.


Assuntos
Antígenos HLA , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Peptídeos , Células-Tronco
5.
Viruses ; 15(10)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896879

RESUMO

SARS-CoV-2 has spread worldwide, causing millions of deaths and leaving a significant proportion of people with long-term sequelae of COVID-19 ("post-COVID syndrome"). Whereas the precise mechanism of post-COVID syndrome is still unknown, the immune response after the first infection may play a role. Here, we performed a long-term follow-up analysis of 110 COVID-19 convalescents, analyzing the first SARS-CoV-2-directed immune response, vaccination status, long-term symptoms (approximately 2.5 years after first infection), and reinfections. A total of 96% of convalescents were vaccinated at least once against SARS-CoV-2 after their first infection. A reinfection rate of 47% was observed, and lower levels of anti-spike IgG antibodies after the first infection were shown to associate with reinfection. While T-cell responses could not be clearly associated with persistent postinfectious symptoms, convalescents with long-term symptoms showed elevated SARS-CoV-2-specific antibody levels at the first infection. Evaluating the immune response after the first infection might be a useful tool for identifying individuals with increased risk for re-infections and long-term symptoms.


Assuntos
COVID-19 , Humanos , Reinfecção , SARS-CoV-2 , Seguimentos , Anticorpos Antivirais
6.
Front Immunol ; 14: 1219720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545538

RESUMO

Introduction: Mass spectrometry-based immunopeptidomics is the only unbiased method to identify naturally presented HLA ligands, which is an indispensable prerequisite for characterizing novel tumor antigens for immunotherapeutic approaches. In recent years, improvements based on devices and methodology have been made to optimize sensitivity and throughput in immunopeptidomics. However, developments in ligand isolation, mass spectrometric analysis, and subsequent data processing can have a marked impact on the quality and quantity of immunopeptidomics data. Methods: In this work, we compared the immunopeptidome composition in terms of peptide yields, spectra quality, hydrophobicity, retention time, and immunogenicity of two established immunoprecipitation methods (column-based and 96-well-based) using cell lines as well as primary solid and hematological tumor samples. Results: Although, we identified comparable overall peptide yields, large proportions of method-exclusive peptides were detected with significantly higher hydrophobicity for the column-based method with potential implications for the identification of immunogenic tumor antigens. We showed that column preparation does not lose hydrophilic peptides in the hydrophilic washing step. In contrast, an additional 50% acetonitrile elution could partially regain lost hydrophobic peptides during 96-well preparation, suggesting a reduction of the bias towards the column-based method but not completely equalizing it. Discussion: Together, this work showed how different immunoprecipitation methods and their adaptions can impact the peptide repertoire of immunopeptidomic analysis and therefore the identification of potential tumor-associated antigens.


Assuntos
Neoplasias , Peptídeos , Humanos , Peptídeos/metabolismo , Espectrometria de Massas/métodos , Antígenos de Neoplasias , Imunoprecipitação
7.
Nat Commun ; 14(1): 5032, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596280

RESUMO

T-cell immunity is central for control of COVID-19, particularly in patients incapable of mounting antibody responses. CoVac-1 is a peptide-based T-cell activator composed of SARS-CoV-2 epitopes with documented favorable safety profile and efficacy in terms of SARS-CoV-2-specific T-cell response. We here report a Phase I/II open-label trial (NCT04954469) in 54 patients with congenital or acquired B-cell deficiency receiving one subcutaneous CoVac-1 dose. Immunogenicity in terms of CoVac-1-induced T-cell responses and safety are the primary and secondary endpoints, respectively. No serious or grade 4 CoVac-1-related adverse events have been observed. Expected local granuloma formation has been observed in 94% of study subjects, whereas systemic reactogenicity has been mild or absent. SARS-CoV-2-specific T-cell responses have been induced in 86% of patients and are directed to multiple CoVac-1 peptides, not affected by any current Omicron variants and mediated by multifunctional T-helper 1 CD4+ T cells. CoVac-1-induced T-cell responses have exceeded those directed to the spike protein after mRNA-based vaccination of B-cell deficient patients and immunocompetent COVID-19 convalescents with and without seroconversion. Overall, our data show that CoVac-1 induces broad and potent T-cell responses in patients with B-cell/antibody deficiency with a favorable safety profile, which warrants advancement to pivotal Phase III safety and efficacy evaluation. ClinicalTrials.gov identifier NCT04954469.


Assuntos
Agamaglobulinemia , COVID-19 , Humanos , SARS-CoV-2 , Linfócitos T , Peptídeos/uso terapêutico
8.
Viruses ; 15(3)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36992410

RESUMO

With the routine use of effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, the number of life-threatening coronavirus disease 2019 (COVID-19) courses have largely been reduced. However, multiple COVID-19 convalescents, even after asymptomatic to moderate disease, suffer from post-COVID syndrome, with relevant limitations in daily life. The pathophysiologic mechanisms of post-COVID syndrome are still elusive, with dysregulation of the immune system suggested as a central mechanism. Here, we assessed COVID-19 post-infectious symptoms (5-6 months after PCR-confirmed acute infection) together with the humoral immune response against SARS-CoV-2 in non-hospitalized COVID-19 convalescents, early (5-6 weeks) and late (5-6 months) after their first positive SARS-CoV-2 PCR result. Convalescents reporting several post-infectious symptoms (>3) showed higher anti-spike and anti-nucleocapsid antibody levels 5-6 weeks after PCR-confirmed infection with the latter remained increased 5-6 months after positive PCR. Likewise, a higher post-infectious symptom score was associated with increased antibody levels. Of note, convalescents displaying neuro-psychiatric symptoms such as restlessness, palpitations, irritability, and headache, as well as general symptoms such as fatigue/reduced power had higher SARS-CoV-2-specific antibody levels compared with asymptomatic cases. The increased humoral immune response in convalescents with post-COVID syndrome might be useful for the detection of individuals with an increased risk for post-COVID syndrome.


Assuntos
COVID-19 , Transtornos Mentais , Humanos , SARS-CoV-2 , Anticorpos Antivirais , Imunidade Humoral
9.
Semin Immunol ; 66: 101725, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36706520

RESUMO

T-cell immunity, mediated by CD4+ and CD8+ T cells, represents a cornerstone in the control of viral infections. Virus-derived T-cell epitopes are represented by human leukocyte antigen (HLA)-presented viral peptides on the surface of virus-infected cells. They are the prerequisite for the recognition of infected cells by T cells. Knowledge of viral T-cell epitopes provides on the one hand a diagnostic tool to decipher protective T-cell immune responses in the human population and on the other hand various prophylactic and therapeutic options including vaccination approaches and the transfer of virus-specific T cells. Such approaches have already been proven to be effective against various viral infections, particularly in immunocompromised patients lacking sufficient humoral, antibody-based immune response. This review provides an overview on the state of the art as well as current studies regarding the identification and characterization of viral T-cell epitopes and approaches of clinical application. In the first chapter in silico prediction tools and direct, mass spectrometry-based identification of viral T-cell epitopes is compared. The second chapter provides an overview of commonly used assays for further characterization of T-cell responses and phenotypes. The final chapter presents an overview of clinical application of viral T-cell epitopes with a focus on human immunodeficiency virus (HIV), human cytomegalovirus (HCMV) and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), being representatives of relevant viruses.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Humanos , Epitopos de Linfócito T , SARS-CoV-2 , Antígenos de Histocompatibilidade Classe I
10.
Clin Infect Dis ; 76(3): e240-e249, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35717657

RESUMO

BACKGROUND: The rapid emergence of the Omicron variant and its large number of mutations led to its classification as a variant of concern (VOC) by the World Health Organization. Subsequently, Omicron evolved into distinct sublineages (eg, BA.1 and BA.2), which currently represent the majority of global infections. Initial studies of the neutralizing response toward BA.1 in convalescent and vaccinated individuals showed a substantial reduction. METHODS: We assessed antibody (immunoglobulin G [IgG]) binding, ACE2 (angiotensin-converting enzyme 2) binding inhibition, and IgG binding dynamics for the Omicron BA.1 and BA.2 variants compared to a panel of VOCs/variants of interest, in a large cohort (N = 352) of convalescent, vaccinated, and infected and subsequently vaccinated individuals. RESULTS: While Omicron was capable of efficiently binding to ACE2, antibodies elicited by infection or immunization showed reduced binding capacities and ACE2 binding inhibition compared to wild type. Whereas BA.1 exhibited less IgG binding compared to BA.2, BA.2 showed reduced inhibition of ACE2 binding. Among vaccinated samples, antibody binding to Omicron only improved after administration of a third dose. CONCLUSIONS: Omicron BA.1 and BA.2 can still efficiently bind to ACE2, while vaccine/infection-derived antibodies can bind to Omicron. The extent of the mutations within both variants prevents a strong inhibitory binding response. As a result, both Omicron variants are able to evade control by preexisting antibodies.


Assuntos
Enzima de Conversão de Angiotensina 2 , Imunoglobulina G , Humanos , Imunização , Mutação , Complicações Pós-Operatórias , Anticorpos Antivirais , Anticorpos Neutralizantes
11.
iScience ; 25(12): 105643, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36439376

RESUMO

HLA-presented antigenic peptides are central components of T cell-based immunity in infectious disease. Beside HLA molecules on cell surfaces, soluble HLA molecules (sHLA) are released in the blood suggested to impact cellular immune responses. We demonstrated that sHLA levels were significantly increased in COVID-19 patients and convalescent individuals compared to a control cohort and positively correlated with SARS-CoV-2-directed cellular immunity. Of note, patients with severe courses of COVID-19 showed reduced sHLA levels. Mass spectrometry-based characterization of sHLA-bound antigenic peptides, the so-called soluble immunopeptidome, revealed a COVID-19-associated increased diversity of HLA-presented peptides and identified a naturally presented SARS-CoV-2-derived peptide from the viral nucleoprotein in the plasma of COVID-19 patients. Of interest, sHLA serum levels directly correlated with the diversity of the soluble immunopeptidome. Together, these findings suggest an inflammation-driven release of sHLA in COVID-19, directly influencing the diversity of the soluble immunopeptidome with implications for SARS-CoV-2-directed T cell-based immunity and disease outcome.

12.
Sci Immunol ; 7(78): eadd3899, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36318037

RESUMO

Several COVID-19 vaccines are approved to prevent severe disease outcome after SARS-CoV-2 infection. Whereas induction and functionality of antiviral antibody response are largely studied, the induction of T cells upon vaccination with the different approved COVID-19 vaccines is less studied. Here, we report on T cell immunity 4 weeks and 6 months after different vaccination regimens and 4 weeks after an additional booster vaccination in comparison with SARS-CoV-2 T cell responses in convalescents and prepandemic donors using interferon-gamma ELISpot assays and flow cytometry. Increased T cell responses and cross-recognition of B.1.1.529 Omicron variant-specific mutations were observed ex vivo in mRNA- and heterologous-vaccinated donors compared with vector-vaccinated donors. Nevertheless, potent expandability of T cells targeting the spike protein was observed for all vaccination regimens, with frequency, diversity, and the ability to produce several cytokines of vaccine-induced T cell responses comparable with those in convalescent donors. T cell responses for all vaccinated donors significantly exceeded preexisting cross-reactive T cell responses in prepandemic donors. Booster vaccination led to a significant increase in anti-spike IgG responses, which showed a marked decline 6 months after complete vaccination. In contrast, T cell responses remained stable over time after complete vaccination with no significant effect of booster vaccination on T cell responses and cross-recognition of Omicron BA.1 and BA.2 mutations. This suggested that booster vaccination is of particular relevance for the amelioration of antibody response. Together, our work shows that different vaccination regimens induce broad and long-lasting spike-specific CD4+ and CD8+ T cell immunity to SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , Anticorpos Antivirais
13.
Nat Commun ; 13(1): 6401, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302754

RESUMO

The DNAJB1-PRKACA fusion transcript is the oncogenic driver in fibrolamellar hepatocellular carcinoma, a lethal disease lacking specific therapies. This study reports on the identification, characterization, and immunotherapeutic application of HLA-presented neoantigens specific for the DNAJB1-PRKACA fusion transcript in fibrolamellar hepatocellular carcinoma. DNAJB1-PRKACA-derived HLA class I and HLA class II ligands induce multifunctional cytotoxic CD8+ and T-helper 1 CD4+ T cells, and their cellular processing and presentation in DNAJB1-PRKACA expressing tumor cells is demonstrated by mass spectrometry-based immunopeptidome analysis. Single-cell RNA sequencing further identifies multiple T cell receptors from DNAJB1-PRKACA-specific T cells. Vaccination of a fibrolamellar hepatocellular carcinoma patient, suffering from recurrent short interval disease relapses, with DNAJB1-PRKACA-derived peptides under continued Poly (ADP-ribose) polymerase inhibitor therapy induces multifunctional CD4+ T cells, with an activated T-helper 1 phenotype and high T cell receptor clonality. Vaccine-induced DNAJB1-PRKACA-specific T cell responses persist over time and, in contrast to various previous treatments, are accompanied by durable relapse free survival of the patient for more than 21 months post vaccination. Our preclinical and clinical findings identify the DNAJB1-PRKACA protein as source for immunogenic neoepitopes and corresponding T cell receptors and provide efficacy in a single-patient study of T cell-based immunotherapy specifically targeting this oncogenic fusion.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Regulação Neoplásica da Expressão Gênica , Recidiva Local de Neoplasia/genética , Proteínas de Fusão Oncogênica/genética , Imunoterapia , Peptídeos/genética , Proteínas de Choque Térmico HSP40/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico
14.
Cancers (Basel) ; 14(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36230581

RESUMO

Chronic lymphocytic leukemia (CLL) is characterized by recurrent relapses and resistance to treatment, even with novel therapeutic approaches. Despite being considered as a disease with low mutational burden and thus poor immunogenic, CLL seems to retain the ability of eliciting specific T cell activation. Accordingly, we recently found non-mutated tumor-associated antigens to play a central role in CLL immunosurveillance. Here, we investigated the association of total and CLL-exclusive HLA class I and HLA class II peptide presentation in the mass spectrometry-defined immunopeptidome of leukemic cells with clinical features and disease outcome of 57 CLL patients. Patients whose CLL cells present a more diverse immunopeptidome experienced fewer relapses. During the follow-up phase of up to 10 years, patients with an HLA class I-restricted presentation of high numbers of total and CLL-exclusive peptides on their malignant cells showed a more favorable disease course with a prolonged progression-free survival (PFS). Overall, our results suggest the existence of an efficient T cell-based immunosurveillance mediated by CLL-associated tumor antigens, supporting ongoing efforts in developing T cell-based immunotherapeutic strategies for CLL.

15.
Cancers (Basel) ; 14(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35565389

RESUMO

T-cell recognition of HLA-presented antigens is central for the immunological surveillance of malignant disease and key for the development of novel T-cell-based immunotherapy approaches. In recent years, large-scale immunopeptidome studies identified naturally presented tumor-associated antigens for several malignancies. Regarding ovarian carcinoma (OvCa), Mucin-16 (MUC16) and Mesothelin (MSLN) were recently described as the top HLA class I- and HLA class II-presented tumor antigens, respectively. Here, we investigate the role and impact of immunopeptidome-presented tumor antigens on the clinical outcomes of 39 OvCa patients with a follow-up time of up to 50 months after surgery. Patients with a HLA-restricted presentation of high numbers of different MSLN-derived peptides on their tumors exhibited significantly prolonged progression-free (PFS) and overall survival (OS), whereas the presentation of MUC16-derived HLA class I-restricted peptides had no impact. Furthermore, a high HLA-DRB gene expression was associated with increased PFS and OS. In line, in silico prediction revealed that MSLN-derived HLA class II-presented peptides are predominantly presented on HLA-DR allotypes. In conclusion, the correlation of MSLN tumor antigen presentation and HLA-DRB gene expression with prolonged survival indicates a central role of CD4+ T-cell responses for tumor immune surveillance in OvCa, and highlights the importance of immunopeptidome-guided tumor antigen discovery.

16.
Int J Infect Dis ; 120: 187-195, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35429640

RESUMO

OBJECTIVES: Besides SARS-CoV-2-directed humoral immune responses, T cell responses are indispensable for effective antiviral immunity. Recent data have shown a correlation between COVID-19 symptoms and humoral immune response, but so far, little is known about the association of SARS-CoV-2-directed T cell responses and disease severity. Herein, we evaluated the prevalence of different clinical COVID-19 symptoms in relation to SARS-CoV-2-directed humoral and cellular immune responses. METHODS: The severity of eight different symptoms during acute infection were assessed using questionnaires from 193 convalescent individuals and were evaluated in relation to SARS-CoV-2 antibody levels and intensity of SARS-CoV-2-specific T cell responses 2-8 weeks after positive polymerase chain reaction. RESULTS: Although increased IgG serum levels could be associated with severity of most symptoms, no difference in T cell response intensity between different symptom severities was observed for the majority of COVID-19 symptoms. However, when analyzing loss of smell or taste and cough, awareness of more severe symptoms was associated with reduced T cell response intensities. CONCLUSIONS: These data suggest that rapid virus clearance mediated by SARS-CoV-2-specific T cells prevents severe symptoms of COVID-19.


Assuntos
COVID-19 , Infecções , Anticorpos Antivirais , Humanos , Imunidade Celular , Imunidade Humoral , Prevalência , SARS-CoV-2
17.
Cell Mol Life Sci ; 79(3): 171, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35239002

RESUMO

BACKGROUND: Upstream open reading frames (uORFs) represent translational control elements within eukaryotic transcript leader sequences. Recent data showed that uORFs can encode for biologically active proteins and human leukocyte antigen (HLA)-presented peptides in malignant and benign cells suggesting their potential role in cancer cell development and survival. However, the role of uORFs in translational regulation of cancer-associated transcripts as well as in cancer immune surveillance is still incompletely understood. METHODS: We examined the translational regulatory effect of 29 uORFs in 13 cancer-associated genes by dual-luciferase assays. Cellular expression and localization of uORF-encoded peptides (uPeptides) were investigated by immunoblotting and immunofluorescence-based microscopy. Furthermore, we utilized mass spectrometry-based immunopeptidome analyses in an extensive dataset of primary malignant and benign tissue samples for the identification of naturally presented uORF-derived HLA-presented peptides screening for more than 2000 uORFs. RESULTS: We provide experimental evidence for similarly effective translational regulation of cancer-associated transcripts through uORFs initiated by either canonical AUG codons or by alternative translation initiation sites (aTISs). We further demonstrate frequent cellular expression and reveal occasional specific cellular localization of uORF-derived peptides, suggesting uPeptide-specific biological implications. Immunopeptidome analyses delineated a set of 125 naturally presented uORF-derived HLA-presented peptides. Comparative immunopeptidome profiling of malignant and benign tissue-derived immunopeptidomes identified several tumor-associated uORF-derived HLA ligands capable to induce multifunctional T cell responses. CONCLUSION: Our data provide direct evidence for the frequent expression of uPeptides in benign and malignant human tissues, suggesting a potentially widespread function of uPeptides in cancer biology. These findings may inspire novel approaches in direct molecular as well as immunotherapeutic targeting of cancer-associated uORFs and uPeptides.


Assuntos
Antígenos de Neoplasias , Neoplasias/genética , Peptídeos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Células HEK293 , Humanos , Fases de Leitura Aberta , Peptídeos/genética , Peptídeos/metabolismo
18.
Nature ; 601(7894): 617-622, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34814158

RESUMO

T cell immunity is central for the control of viral infections. CoVac-1 is a peptide-based vaccine candidate, composed of SARS-CoV-2 T cell epitopes derived from various viral proteins1,2, combined with the Toll-like receptor 1/2 agonist XS15 emulsified in Montanide ISA51 VG, aiming to induce profound SARS-CoV-2 T cell immunity to combat COVID-19. Here we conducted a phase I open-label trial, recruiting 36 participants aged 18-80 years, who received a single subcutaneous CoVac-1 vaccination. The primary end point was safety analysed until day 56. Immunogenicity in terms of CoVac-1-induced T cell response was analysed as the main secondary end point until day 28 and in the follow-up until month 3. No serious adverse events and no grade 4 adverse events were observed. Expected local granuloma formation was observed in all study participants, whereas systemic reactogenicity was absent or mild. SARS-CoV-2-specific T cell responses targeting multiple vaccine peptides were induced in all study participants, mediated by multifunctional T helper 1 CD4+ and CD8+ T cells. CoVac-1-induced IFNγ T cell responses persisted in the follow-up analyses and surpassed those detected after SARS-CoV-2 infection as well as after vaccination with approved vaccines. Furthermore, vaccine-induced T cell responses were unaffected by current SARS-CoV-2 variants of concern. Together, CoVac-1 showed a favourable safety profile and induced broad, potent and variant of concern-independent T cell responses, supporting the presently ongoing evaluation in a phase II trial for patients with B cell or antibody deficiency.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Administração Cutânea , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , Ensaios Clínicos Fase II como Assunto , Feminino , Granuloma/imunologia , Humanos , Imunogenicidade da Vacina , Interferon gama/imunologia , Masculino , Pessoa de Meia-Idade , Linfócitos T Auxiliares-Indutores/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/efeitos adversos , Adulto Jovem
19.
Eur J Immunol ; 51(11): 2651-2664, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34424997

RESUMO

Both B cells and T cells are involved in an effective immune response to SARS-CoV-2, the disease-causing virus of COVID-19. While B cells-with the indispensable help of CD4+ T cells-are essential to generate neutralizing antibodies, T cells on their own have been recognized as another major player in effective anti-SARS-CoV-2 immunity. In this report, we provide insights into the characteristics of individual HLA-A*02:01- and HLA-A*24:02-restricted SARS-CoV-2-reactive TCRs, isolated from convalescent COVID-19 patients. We observed that SARS-CoV-2-reactive T-cell populations were clearly detectable in convalescent samples and that TCRs isolated from these T cell clones were highly functional upon ectopic re-expression. The SARS-CoV-2-reactive TCRs described in this report mediated potent TCR signaling in reporter assays with low nanomolar EC50 values. We further demonstrate that these SARS-CoV-2-reactive TCRs conferred powerful T-cell effector function to primary CD8+ T cells as evident by a robust anti-SARS-CoV-2 IFN-γ response and in vitro cytotoxicity. We also provide an example of a long-lasting anti-SARS-CoV-2 memory response by reisolation of one of the retrieved TCRs 5 months after initial sampling. Taken together, these findings contribute to a better understanding of anti-SARS-CoV-2 T-cell immunity and may contribute to paving the way toward immunotherapeutics approaches targeting SARS-CoV-2.


Assuntos
COVID-19/imunologia , Epitopos de Linfócito T/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Humanos , Memória Imunológica , Ativação Linfocitária/imunologia
20.
Front Immunol ; 12: 705974, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305947

RESUMO

Antigen-specific immunotherapies, in particular peptide vaccines, depend on the recognition of naturally presented antigens derived from mutated and unmutated gene products on human leukocyte antigens, and represent a promising low-side-effect concept for cancer treatment. So far, the broad application of peptide vaccines in cancer patients is hampered by challenges of time- and cost-intensive personalized vaccine design, and the lack of neoepitopes from tumor-specific mutations, especially in low-mutational burden malignancies. In this study, we developed an immunopeptidome-guided workflow for the design of tumor-associated off-the-shelf peptide warehouses for broadly applicable personalized therapeutics. Comparative mass spectrometry-based immunopeptidome analyses of primary chronic lymphocytic leukemia (CLL) samples, as representative example of low-mutational burden tumor entities, and a dataset of benign tissue samples enabled the identification of high-frequent non-mutated CLL-associated antigens. These antigens were further shown to be recognized by pre-existing and de novo induced T cells in CLL patients and healthy volunteers, and were evaluated as pre-manufactured warehouse for the construction of personalized multi-peptide vaccines in a first clinical trial for CLL (NCT04688385). This workflow for the design of peptide warehouses is easily transferable to other tumor entities and can provide the foundation for the development of broad personalized T cell-based immunotherapy approaches.


Assuntos
Antígenos de Neoplasias , Epitopos , Imunoterapia , Leucemia Linfocítica Crônica de Células B , Peptídeos , Adulto , Antígenos de Neoplasias/administração & dosagem , Antígenos de Neoplasias/imunologia , Epitopos/administração & dosagem , Epitopos/imunologia , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/terapia , Masculino , Peptídeos/administração & dosagem , Peptídeos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA