Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(21): 14672-14684, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38743881

RESUMO

Pyridoxal 5'-phosphate (PLP)-dependent enzymes are the most versatile biocatalysts for synthesizing nonproteinogenic amino acids. α,α-Disubstituted quaternary amino acids, such as 1-aminocyclopentane-1-carboxylic acid (cycloleucine), are useful building blocks for pharmaceuticals. In this study, starting with the biosynthesis of fusarilin A, we discovered a family of PLP-dependent enzymes that can facilitate tandem carbon-carbon forming steps to catalyze an overall [3 + 2]-annulation. In the first step, the cycloleucine synthases use SAM as the latent electrophile and an in situ-generated enamine as the nucleophile for γ-substitution. Whereas previously characterized γ-replacement enzymes protonate the resulting α-carbon and release the acyclic amino acid, cycloleucine synthases can catalyze an additional, intramolecular aldol or Mannich reaction with the nucleophilic α-carbon to form the substituted cyclopentane. Overall, the net [3 + 2]-annulation reaction can lead to 2-hydroxy or 2-aminocycloleucine products. These studies further expand the biocatalytic scope of PLP-dependent enzymes.


Assuntos
Fosfato de Piridoxal , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/química , Biocatálise , Estrutura Molecular , Ciclopentanos/química , Ciclopentanos/metabolismo
2.
Angew Chem Int Ed Engl ; : e202404290, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589297

RESUMO

Controlled modulation of electronic and magnetic properties in stimuli-responsive materials provides valuable insights for the design of magnetoelectric or multiferroic devices. This paper demonstrates the modulation of electrical and magnetic properties of a semiconductive, paramagnetic metal-organic framework (MOF) Cu3(C6O6)2 with small gaseous molecules, NH3, H2S, and NO. This study merges chemiresistive and magnetic tests to reveal that the MOF undergoes simultaneous changes in electrical conductance and magnetization that are uniquely modulated by each gas. The features of response, including direction, magnitude, and kinetics, are modulated by the physicochemical properties of the gaseous molecules. This study advances the design of multifunctional materials capable of undergoing simultaneous changes in electrical and magnetic properties in response to chemical stimuli.

3.
ACS Cent Sci ; 10(1): 176-183, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38292598

RESUMO

The structural determination of natural products (NPs) can be arduous because of sample heterogeneity. This often demands iterative purification processes and characterization of complex molecules that may be available only in miniscule quantities. Microcrystal electron diffraction (microED) has recently shown promise as a method to solve crystal structures of NPs from nanogram quantities of analyte. However, its implementation in NP discovery remains hampered by sample throughput and purity requirements, akin to traditional NP-discovery workflows. In the methods described herein, we leverage the resolving power of transmission electron microscopy (TEM) and the miniaturization capabilities of deoxyribonucleic acid (DNA) microarray technology to address these challenges through the establishment of an NP screening platform, array electron diffraction (ArrayED). In this workflow, an array of high-performance liquid chromatography (HPLC) fractions taken from crude extracts was deposited onto TEM grids in picoliter-sized droplets. This multiplexing of analytes on TEM grids enables 1200 or more unique samples to be simultaneously inserted into a TEM instrument equipped with an autoloader. Selected area electron diffraction analysis of these microarrayed grids allows for the rapid identification of crystalline metabolites. In this study, ArrayED enabled structural characterization of 14 natural products, including four novel crystal structures and two novel polymorphs, from 20 crude extracts. Moreover, we identify several chemical species that would not be detected by standard mass spectrometry (MS) or ultraviolet-visible (UV/vis) spectroscopy and crystal forms that would not be characterized using traditional methods.

4.
Org Lett ; 26(5): 1000-1005, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38295154

RESUMO

Medium-sized rings (8-11-membered cycles) are often more challenging to synthesize than smaller rings (5-7-membered cycles) due to ring strain. Herein, we report a catalytic method for forming 8- and 9-membered rings that proceeds via the intramolecular Friedel-Crafts reactions of vinyl carbocation intermediates. These reactive species are generated catalytically through the ionization of vinyl toluenesulfonates by a Lewis acidic lithium cation-weakly coordinating anion salt.

5.
Chem Sci ; 14(40): 11022-11032, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37860661

RESUMO

Aspergillus fumigatus is a serious human pathogen causing life-threatening Aspergillosis in immunocompromised patients. Secondary metabolites (SMs) play an important role in pathogenesis, but the products of many SM biosynthetic gene clusters (BGCs) remain unknown. In this study, we have developed a heterologous expression platform in Aspergillus nidulans, using a newly created genetic dereplication strain, to express a previously unknown BGC from A. fumigatus and determine its products. The BGC produces sartorypyrones, and we have named it the spy BGC. Analysis of targeted gene deletions by HRESIMS, NMR, and microcrystal electron diffraction (MicroED) enabled us to identify 12 products from the spy BGC. Seven of the compounds have not been isolated previously. We also individually expressed the polyketide synthase (PKS) gene spyA and demonstrated that it produces the polyketide triacetic acid lactone (TAL), a potentially important biorenewable platform chemical. Our data have allowed us to propose a biosynthetic pathway for sartorypyrones and related natural products. This work highlights the potential of using the A. nidulans heterologous expression platform to uncover cryptic BGCs from A. fumigatus and other species, despite the complexity of their secondary metabolomes.

6.
Org Lett ; 25(20): 3591-3595, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37192420

RESUMO

A methodology for the construction of sterically congested quaternary centers via the trapping of vinyl carbocations with silyl ketene acetals is disclosed. This main group-catalyzed α-vinylation reaction is advantageous as methods to access these congested motifs are limited. Moreover, ß,γ-unsaturated carbonyl moieties and tetrasubstituted alkenes are present in various bioactive natural products and pharmaceuticals, and this catalytic platform offers a means of accessing them using simple and inexpensive materials.

7.
ACS Omega ; 8(15): 13899-13910, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37091395

RESUMO

Many marine algae occupy habitats that are dark, deep, or encrusted on other organisms and hence are frequently overlooked by natural product chemists. However, exploration of less-studied organisms can lead to new opportunities for drug discovery. Genetic variation at the individual, species, genus, and population levels as well as environmental influences on gene expression enable expansion of the chemical repertoire associated with a taxonomic group, enabling natural product exploration using innovative analytical methods. A nontargeted LC-MS and 1H NMR spectroscopy-based metabolomic study of 32 collections of representatives of the calcareous red algal genus Peyssonnelia from coral reef habitats in Fiji and the Solomon Islands revealed significant correlations between natural products' chemistry, phylogeny, and biomedically relevant biological activity. Hierarchical cluster analysis (HCA) of LC-MS data in conjunction with NMR profiling and MS/MS-based molecular networking revealed the presence of at least four distinct algal chemotypes within the genus Peyssonnelia. Two Fijian collections were prioritized for further analysis, leading to the isolation of three novel sulfated triterpene glycosides with a rearranged isomalabaricane carbon skeleton, guided by the metabolomic data. The discovery of peyssobaricanosides A-C (15-17) from two Fijian Peyssonnelia collections, but not from closely related specimens collected in the Solomon Islands that were otherwise chemically and phylogenetically very similar, alludes to population-level variation in secondary metabolite production. Our study reinforces the significance of exploring unusual ecological niches and showcases marine red algae as a chemically rich treasure trove.

8.
J Org Chem ; 88(6): 3403-3408, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36820472

RESUMO

The mechanisms of the C-H insertion reactions of vinyl carbocations formed by heterolysis of vinyl trifluoromethanesulfonates (triflates) by catalytic lithiated 1,3-bis[3,5-bis(trifluoromethyl)phenyl]urea (Li+-ureide) have been studied with ωB97X-D density functional theory. The ionization promoted by the Li+-ureide forms a metastable intimate ion pair complex of Li+-ureide-triflate anion and vinyl cation. The relative thermodynamic stabilities of isomeric alkyl cations are impacted by ion-pairing with the Li+-ureide-triflate anion. We show that the C-H insertion reaction of the vinyl cation intermediate is the rate-determining step and explain the effect of the aryl substituents on the formation of the vinyl cation and its C-H insertion reactivity as well as the regioselectivity of C-H activation by the vinyl cation.

9.
Org Lett ; 25(9): 1547-1552, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36827601

RESUMO

Xyloketal B is a pentacyclic fungal marine natural product that has shown potential for the treatment of diseases such as Alzheimer's disease and atherosclerosis. Herein, we describe the first asymmetric synthesis of this natural product, which relies on a chemoenzymatic strategy. This approach leverages a biocatalytic benzylic hydroxylation to access to an ortho-quinone methide intermediate which is captured in a [4 + 2] cycloaddition to stereoselectively yield a key cyclic ketal intermediate enroute to (+)-xyloketal B. The relative configuration of this intermediate was rapidly confirmed as the desired stereoisomer using MicroED. To complete the synthesis, a second ortho-quinone methide was accessed through a reductive approach, ultimately leading to the stereoselective synthesis of (+)-xyloketal B.


Assuntos
Indolquinonas , Piranos , Estereoisomerismo
10.
Science ; 378(6624): 1085-1091, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36480623

RESUMO

From the preparation of pharmaceuticals to enzymatic construction of natural products, carbocations are central to molecular synthesis. Although these reactive intermediates are engaged in stereoselective processes in nature, exerting enantiocontrol over carbocations with synthetic catalysts remains challenging. Many resonance-stabilized tricoordinated carbocations, such as iminium and oxocarbenium ions, have been applied in catalytic enantioselective reactions. However, their dicoordinated counterparts (aryl and vinyl carbocations) have not, despite their emerging utility in chemical synthesis. We report the discovery of a highly enantioselective vinyl carbocation carbon-hydrogen (C-H) insertion reaction enabled by imidodiphosphorimidate organocatalysts. Active site confinement featured in this catalyst class not only enables effective enantiocontrol but also expands the scope of vinyl cation C-H insertion chemistry, which broadens the utility of this transition metal-free C(sp3)-H functionalization platform.

11.
Plant J ; 111(4): 995-1014, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35699388

RESUMO

Even subtle modifications in growth conditions elicit acclimation responses affecting the molecular and elemental makeup of organisms, both in the laboratory and in natural habitats. We systematically explored the effect of temperature, pH, nutrient availability, culture density, and access to CO2 and O2 in laboratory-grown algal cultures on growth rate, the ionome, and the ability to accumulate Fe. We found algal cells accumulate Fe in alkaline conditions, even more so when excess Fe is present, coinciding with a reduced growth rate. Using a combination of Fe-specific dyes, X-ray fluorescence microscopy, and NanoSIMS, we show that the alkaline-accumulated Fe was intracellularly sequestered into acidocalcisomes, which are localized towards the periphery of the cells. At high photon flux densities, Zn and Ca specifically over-accumulate, while Zn alone accumulates at low temperatures. The impact of aeration was probed by reducing shaking speeds and changing vessel fill levels; the former increased the Cu quota of cultures, the latter resulted in a reduction in P, Ca, and Mn at low fill levels. Trace element quotas were also affected in the stationary phase, where specifically Fe, Cu, and Zn accumulate. Cu accumulation here depends inversely on the Fe concentration of the medium. Individual laboratory strains accumulate Ca, P, and Cu to different levels. All together, we identified a set of specific changes to growth rate, elemental composition, and the capacity to store Fe in response to subtle differences in culturing conditions of Chlamydomonas, affecting experimental reproducibility. Accordingly, we recommend that these variables be recorded and reported as associated metadata.


Assuntos
Chlamydomonas , Oligoelementos , Reprodutibilidade dos Testes
12.
Chem Commun (Camb) ; 58(45): 6558, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35605976

RESUMO

Correction for 'Cesium carbonate mediated C-H functionalization of perhalogenated 12-vertex carborane anions' by Sergio O. Lovera et al., Chem. Commun., 2022, 58, 4060-4062, DOI: https://doi.org/10.1039/D2CC00173J.

13.
Chem Commun (Camb) ; 58(25): 4060-4062, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35262161

RESUMO

C-H functionalization of undecahalogenated carborane anions, [HCB11X11-] (X = Cl, Br, I), is performed with Cs2CO3 in acetonitrile. We show that the requisite Cl, Br and I carborane dianions can all be efficiently accessed with Cs2CO3. The utilization of Cs2CO3 eliminates the complications associated with competing E2 elimination reactions providing an efficient, more functional group tolerant, and broader scope than previously reported. The ensuing functionalized cages provide potential synthons for constructing advanced materials and other molecular architectures for various applications.

14.
Angew Chem Int Ed Engl ; 61(12): e202113972, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35029844

RESUMO

The electrochemical generation of vinyl carbocations from alkenyl boronic esters and boronates is reported. Using easy-to-handle nucleophilic fluoride reagents, these intermediates are trapped to form fully substituted vinyl fluorides. Mechanistic studies support the formation of dicoordinated carbocations through sequential single-electron oxidation events. Notably, this electrochemical fluorination features fast reaction times and Lewis acid-free conditions. This transformation provides a complementary method to access vinyl fluorides with simple fluoride salts such as TBAF.

15.
Angew Chem Int Ed Engl ; 61(6): e202113569, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34784436

RESUMO

This paper describes structural elucidation of a layered conductive metal-organic framework (MOF) material Cu3 (C6 O6 )2 by microcrystal electron diffraction with sub-angstrom precision. This insight enables the first identification of an unusual π-stacking interaction in a layered MOF material characterized by an extremely short (2.73 Å) close packing of the ligand arising from pancake bonding and ordered water clusters within pores. Band structure analysis suggests semiconductive properties of the MOF, which are likely related to the localized nature of pancake bonds and the formation of a singlet dimer of the ligand. The spin of CuII within the Kagomé arrangement dominates the paramagnetism of the MOF, leading to strong geometrical magnetic frustration.

16.
ACS Appl Mater Interfaces ; 13(50): 60306-60318, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34898182

RESUMO

This paper describes the design, synthesis, characterization, and performance of a novel semiconductive crystalline coordination network, synthesized using 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) ligands interconnected with bismuth ions, toward chemiresistive gas sensing. Bi(HHTP) exhibits two distinct structures upon hydration and dehydration of the pores within the network, Bi(HHTP)-α and Bi(HHTP)-ß, respectively, both with unprecedented network topology (2,3-c and 3,4,4,5-c nodal net stoichiometry, respectively) and unique corrugated coordination geometries of HHTP molecules held together by bismuth ions, as revealed by a crystal structure resolved via microelectron diffraction (MicroED) (1.00 Å resolution). Good electrical conductivity (5.3 × 10-3 S·cm-1) promotes the utility of this material in the chemical sensing of gases (NH3 and NO) and volatile organic compounds (VOCs: acetone, ethanol, methanol, and isopropanol). The chemiresistive sensing of NO and NH3 using Bi(HHTP) exhibits limits of detection 0.15 and 0.29 parts per million (ppm), respectively, at low driving voltages (0.1-1.0 V) and operation at room temperature. This material is also capable of exhibiting unique and distinct responses to VOCs at ppm concentrations. Spectroscopic assessment via X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopic methods (i.e., attenuated total reflectance-infrared spectroscopy (ATR-IR) and diffuse reflectance infrared Fourier transformed spectroscopy (DRIFTS)), suggests that the sensing mechanisms of Bi(HHTP) to VOCs, NO, and NH3 comprise a complex combination of steric, electronic, and protic properties of the targeted analytes.

17.
Nat Commun ; 12(1): 6818, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819494

RESUMO

Topochemical polymerization reactions hold the promise of producing ultra-high molecular weight crystalline polymers. However, the totality of topochemical polymerization reactions has failed to produce ultra-high molecular weight polymers that are both soluble and display variable functionality, which are restrained by the crystal-packing and reactivity requirements on their respective monomers in the solid state. Herein, we demonstrate the topochemical polymerization reaction of a family of para-azaquinodimethane compounds that undergo facile visible light and thermally initiated polymerization in the solid state, allowing for the first determination of a topochemical polymer crystal structure resolved via the cryoelectron microscopy technique of microcrystal electron diffraction. The topochemical polymerization reaction also displays excellent functional group tolerance, accommodating both solubilizing side chains and reactive groups that allow for post-polymerization functionalization. The thus-produced soluble ultra-high molecular weight polymers display superior capacitive energy storage properties. This study overcomes several synthetic and characterization challenges amongst topochemical polymerization reactions, representing a critical step toward their broader application.

18.
Org Lett ; 23(20): 7819-7823, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34581588

RESUMO

4-Hydroxy-2-pyridone alkaloids have attracted attention for synthetic and biosynthetic studies due to their broad biological activities and structural diversity. Here, we elucidated the pathway and chemical logic of (-)-sambutoxin (1) biosynthesis. In particular, we uncovered the enzymatic origin of the tetrahydropyran moiety and showed that the p-hydroxyphenyl group is installed via a late-stage, P450-catalyzed oxidation of the phenylalanine-derived side chain rather than via a direct incorporation of tyrosine.


Assuntos
Fusarium/química , Micotoxinas/química , Fenilalanina/química , Piridinas/química , Tirosina/química , Alcaloides/química , Fusarium/metabolismo , Estrutura Molecular , Oxirredução
19.
Nat Chem Biol ; 17(8): 872-877, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34312563

RESUMO

More than 60% of pharmaceuticals are related to natural products (NPs), chemicals produced by living organisms. Despite this, the rate of NP discovery has slowed over the past few decades. In many cases the rate-limiting step in NP discovery is structural characterization. Here we report the use of microcrystal electron diffraction (MicroED), an emerging cryogenic electron microscopy (CryoEM) method, in combination with genome mining to accelerate NP discovery and structural elucidation. As proof of principle we rapidly determine the structure of a new 2-pyridone NP, Py-469, and revise the structure of fischerin, an NP isolated more than 25 years ago, with potent cytotoxicity but hitherto ambiguous structural assignment. This study serves as a powerful demonstration of the synergy of MicroED and synthetic biology in NP discovery, technologies that when taken together will ultimately accelerate the rate at which new drugs are discovered.


Assuntos
Produtos Biológicos/química , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Molecular
20.
J Am Chem Soc ; 143(20): 7740-7747, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33998231

RESUMO

Molecular spur gear dynamics with high gearing fidelity can be achieved through a careful selection of constituent molecular components that favorably position and maintain the two gears in a meshed configuration. Here, we report the synthesis of a new macrocyclic molecular spur gear with a bibenzimidazole stator combined with a second naphthyl bis-gold-phosphine gold complex stator to place two 3-fold symmetric 9,10-diethynyl triptycene cogs at the optimal distance of 8.1 Å for gearing. Micro electron diffraction (µED) analysis confirmed the formation of the macrocyclic structure and the proper alignment of the triptycene cogs. Gearing dynamics in solution are predicted to be extremely fast and, in fact, were too fast to be observed with variable-temperature 1H NMR using CD2Cl2 as the solvent. A combination of molecular dynamics and metadynamics simulations predict that the barriers for gearing and slippage are ca. 4 kcal mol-1 and ca. 9 kcal mol-1, respectively. This system is characterized by enhanced gearing fidelity compared to the acyclic analog. This is achieved by rigidification of the structure, locking the two triptycenes in the preferred gearing distance and orientation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA