Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mediators Inflamm ; 2013: 748395, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24459330

RESUMO

BACKGROUND: Nonbacterial prostatitis has no established etiology. We hypothesized that proteinase-activated receptor-1 (PAR1) can play a role in prostatitis. We therefore investigated the effects of PAR1 stimulation in the context of a new model of murine nonbacterial prostatitis. METHODS: Using a hapten (ethanol-dinitrobenzene sulfonic acid- (DNBS-)) induced prostatitis model with both wild-type and PAR1-null mice, we examined (1) the location of PAR1 in the mouse prostate and (2) the impact of a PAR1-activating peptide (TFLLR-NH2: PAR1-TF) on ethanol-DNBS-induced inflammation. RESULTS: Ethanol-DNBS-induced inflammation was maximal at 2 days. In the tissue, PAR1 was expressed predominantly along the apical acini of prostatic epithelium. Although PAR1-TF on its own did not cause inflammation, its coadministration with ethanol-DNBS reduced all indices of acute prostatitis. Further, PAR1-TF administration doubled the prostatic production of interleukin-10 (IL-10) compared with ethanol-DNBS treatment alone. This enhanced IL-10 was not observed in PAR1-null mice and was not caused by the reverse-sequence receptor-inactive peptide, RLLFT-NH2. Surprisingly, PAR1-TF, also diminished ethanol-DNBS-induced inflammation in PAR1-null mice. CONCLUSIONS: PAR1 is expressed in the mouse prostate and its activation by PAR1-TF elicits immunomodulatory effects during ethanol-DNBS-induced prostatitis. However, PAR1-TF also diminishes ethanol-DNBS-induced inflammation via a non-PAR1 mechanism by activating an as-yet unknown receptor.


Assuntos
Fatores Imunológicos/farmacologia , Oligopeptídeos/farmacologia , Prostatite/prevenção & controle , Receptor PAR-1/fisiologia , Animais , Anti-Inflamatórios/farmacologia , Dinitrofluorbenzeno/análogos & derivados , Dinitrofluorbenzeno/toxicidade , Modelos Animais de Doenças , Etanol/toxicidade , Interleucina-10/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prostatite/etiologia , Prostatite/imunologia
2.
BMC Genomics ; 12: 470, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21955929

RESUMO

BACKGROUND: Evolution of the Brassica species has been recursively affected by polyploidy events, and comparison to their relative, Arabidopsis thaliana, provides means to explore their genomic complexity. RESULTS: A genome-wide physical map of a rapid-cycling strain of B. oleracea was constructed by integrating high-information-content fingerprinting (HICF) of Bacterial Artificial Chromosome (BAC) clones with hybridization to sequence-tagged probes. Using 2907 contigs of two or more BACs, we performed several lines of comparative genomic analysis. Interspecific DNA synteny is much better preserved in euchromatin than heterochromatin, showing the qualitative difference in evolution of these respective genomic domains. About 67% of contigs can be aligned to the Arabidopsis genome, with 96.5% corresponding to euchromatic regions, and 3.5% (shown to contain repetitive sequences) to pericentromeric regions. Overgo probe hybridization data showed that contigs aligned to Arabidopsis euchromatin contain ~80% of low-copy-number genes, while genes with high copy number are much more frequently associated with pericentromeric regions. We identified 39 interchromosomal breakpoints during the diversification of B. oleracea and Arabidopsis thaliana, a relatively high level of genomic change since their divergence. Comparison of the B. oleracea physical map with Arabidopsis and other available eudicot genomes showed appreciable 'shadowing' produced by more ancient polyploidies, resulting in a web of relatedness among contigs which increased genomic complexity. CONCLUSIONS: A high-resolution genetically-anchored physical map sheds light on Brassica genome organization and advances positional cloning of specific genes, and may help to validate genome sequence assembly and alignment to chromosomes.All the physical mapping data is freely shared at a WebFPC site (http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/; Temporarily password-protected: account: pgml; password: 123qwe123.


Assuntos
Brassica/genética , Mapeamento de Sequências Contíguas , Evolução Molecular , Genoma de Planta , Arabidopsis/genética , Cromossomos Artificiais Bacterianos , Hibridização Genômica Comparativa , DNA de Plantas/genética , Eucromatina/genética , Biblioteca Genômica , Heterocromatina/genética , Análise de Sequência de DNA
3.
Microbiology (Reading) ; 156(Pt 12): 3699-3709, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20817643

RESUMO

Pseudomonas aeruginosa has long been known to produce phenotypic variants during chronic mucosal surface infections. These variants are thought to be generated to ensure bacterial survival against the diverse challenges in the mucosal environment. Studies have begun to elucidate the mechanisms by which these variants emerge in vitro; however, too little information exists on phenotypic variation in vivo to draw any links between variants generated in vitro and in vivo. Consequently, in this study, the P. aeruginosa gacS gene, which has previously been linked to the generation of small colony variants (SCVs) in vitro, was studied in an in vivo mucosal surface infection model. More specifically, the rat prostate served as a model mucosal surface to test for the appearance of SCVs in vivo following infections with P. aeruginosa gacS(-) strains. As in in vitro studies, deletion of the gacS gene led to SCV production in vivo. The appearance of these in vivo SCVs was important for the sustainability of a chronic infection. In the subset of rats in which P. aeruginosa gacS(-) did not convert to SCVs, clearance of the bacteria took place and healing of the tissue ensued. When comparing the SCVs that arose at the mucosal surface (MS-SCVs) with in vitro SCVs (IV-SCVs) from the same gacS(-) parent, some differences between the phenotypic variants were observed. Whereas both MS-SCVs and IV-SCVs formed dense biofilms, MS-SCVs exhibited a less diverse resistance profile to antimicrobial agents than IV-SCVs. Additionally, MS-SCVs were better suited to initiate an infection in the rat model than IV-SCVs. Together, these observations suggest that phenotypic variation in vivo can be important for maintenance of infection, and that in vivo variants may differ from in vitro variants generated from the same genetic parent.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Animais , Proteínas de Bactérias/genética , Humanos , Masculino , Mucosa/microbiologia , Fenótipo , Próstata/microbiologia , Pseudomonas aeruginosa/genética , Ratos , Ratos Sprague-Dawley
4.
Microbiology (Reading) ; 155(Pt 8): 2612-2619, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19460822

RESUMO

Pseudomonas aeruginosa frequently acts as an opportunistic pathogen of mucosal surfaces; yet, despite causing aggressive prostatitis in some men, its role as a pathogen in the prostate has not been investigated. Consequently, we developed a Ps. aeruginosa infection model in the rat prostate by instilling wild-type (WT) Ps. aeruginosa strain PAO1 into the rat prostate. It was found that Ps. aeruginosa produced acute and chronic infections in this mucosal tissue as determined by bacterial colonization, gross morphology, tissue damage and inflammatory markers. WT strain PAO1 and its isogenic mutant PAO-JP2, in which both the lasI and rhlI quorum-sensing signal systems have been silenced, were compared during both acute and chronic prostate infections. In acute infections, bacterial numbers and inflammatory markers were comparable between WT PA01 and PAO-JP2; however, considerably less tissue damage occurred in infections with PAO-JP2. Chronic infections with PAO-JP2 resulted in reduced bacterial colonization, tissue damage and inflammation as compared to WT PAO1 infections. Therefore, the quorum-sensing lasI and rhlI genes in Ps. aeruginosa affect acute prostate infections, but play a considerably more important role in maintaining chronic infections. We have thus developed a highly reproducible model for the study of Ps. aeruginosa virulence in the prostate.


Assuntos
Proteínas de Bactérias/metabolismo , Inflamação , Ligases/metabolismo , Prostatite/etiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa , Percepção de Quorum , Fatores de Transcrição/metabolismo , Animais , Citocinas/metabolismo , Masculino , Modelos Animais , Próstata/microbiologia , Próstata/patologia , Próstata/fisiopatologia , Prostatite/metabolismo , Prostatite/fisiopatologia , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Ratos , Fatores de Tempo , Virulência
5.
Proc Natl Acad Sci U S A ; 102(37): 13206-11, 2005 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-16141333

RESUMO

Nearly finished sequences for model organisms provide a foundation from which to explore genomic diversity among other taxonomic groups. We explore genome-wide microsynteny patterns between the rice sequence and two sorghum physical maps that integrate genetic markers, bacterial artificial chromosome (BAC) fingerprints, and BAC hybridization data. The sorghum maps largely tile a genomic component containing 41% of BACs but 80% of single-copy genes that shows conserved microsynteny with rice and partially tile a nonsyntenic component containing 46% of BACs but only 13% of single-copy genes. The remaining BACs are centromeric (4%) or unassigned (8%). The two genomic components correspond to cytologically discernible "euchromatin" and "heterochromatin." Gene and repetitive DNA distributions support this classification. Greater microcolinearity in recombinogenic (euchromatic) than nonrecombinogenic (heterochromatic) regions is consistent with the hypothesis that genomic rearrangements are usually deleterious, thus more likely to persist in nonrecombinogenic regions by virtue of Muller's ratchet. Interchromosomal centromeric rearrangements may have fostered diploidization of a polyploid cereal progenitor. Model plant sequences better guide studies of related genomes in recombinogenic than nonrecombinogenic regions. Bridging of 35 physical gaps in the rice sequence by sorghum BAC contigs illustrates reciprocal benefits of comparative approaches that extend at least across the cereals and perhaps beyond.


Assuntos
Estruturas Cromossômicas , Mapeamento Físico do Cromossomo/métodos , Poaceae/genética , Recombinação Genética , Sintenia , Sequência de Bases , Eucromatina , Genoma de Planta , Heterocromatina , Dados de Sequência Molecular , Oryza/genética , Sorghum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA