Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nat Commun ; 14(1): 4171, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443175

RESUMO

The broad adoption of transgenic crops has revolutionized agriculture. However, resistance to insecticidal proteins by agricultural pests poses a continuous challenge to maintaining crop productivity and new proteins are urgently needed to replace those utilized for existing transgenic traits. We identified an insecticidal membrane attack complex/perforin (MACPF) protein, Mpf2Ba1, with strong activity against the devastating coleopteran pest western corn rootworm (WCR) and a novel site of action. Using an integrative structural biology approach, we determined monomeric, pre-pore and pore structures, revealing changes between structural states at high resolution. We discovered an assembly inhibition mechanism, a molecular switch that activates pre-pore oligomerization upon gut fluid incubation and solved the highest resolution MACPF pore structure to-date. Our findings demonstrate not only the utility of Mpf2Ba1 in the development of biotechnology solutions for protecting maize from WCR to promote food security, but also uncover previously unknown mechanistic principles of bacterial MACPF assembly.


Assuntos
Besouros , Inseticidas , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Zea mays/metabolismo , Besouros/fisiologia , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/metabolismo , Animais Geneticamente Modificados , Perforina/metabolismo , Endotoxinas/metabolismo , Larva/metabolismo , Resistência a Inseticidas
2.
Appl Environ Microbiol ; 89(3): e0162222, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36847510

RESUMO

IPD072Aa from Pseudomonas chlororaphis is a new insecticidal protein that has been shown to have high activity against western corn rootworm (WCR). IPD072 has no sequence signatures or predicted structural motifs with any known protein revealing little insight into its mode of action using bioinformatic tools. As many bacterially derived insecticidal proteins are known to act through mechanisms that lead to death of midgut cells, we evaluated whether IPD072Aa also acts by targeting the cells of WCR midgut. IPD072Aa exhibits specific binding to brush border membrane vesicles (BBMVs) prepared from WCR guts. The binding was found to occur at binding sites that are different than those recognized by Cry3A or Cry34Ab1/Cry35Ab1, proteins expressed by current maize traits that target WCR. Using fluorescence confocal microscopy, immuno-detection of IPD072Aa in longitudinal sections from whole WCR larvae that were fed IPD072Aa revealed the association of the protein with the cells that line the gut. High-resolution scanning electron microscopy of similar whole larval sections revealed the disruption of the gut lining resulting from cell death caused by IPD072Aa exposure. These data show that the insecticidal activity of IPD072Aa results from specific targeting and killing of rootworm midgut cells. IMPORTANCE Transgenic traits targeting WCR based on insecticidal proteins from Bacillus thuringiensis have proven effective in protecting maize yield in North America. High adoption has led to WCR populations that are resistant to the trait proteins. Four proteins have been developed into commercial traits, but they represent only two modes of action due to cross-resistance among three. New proteins suited for trait development are needed. IPD072Aa, identified from the bacterium Pseudomonas chlororaphis, was shown to be effective in protecting transgenic maize against WCR. To be useful, IPD072Aa must work through binding to different receptors than those utilized by current traits to reduce risk of cross-resistance and understanding its mechanism of toxicity could aid in countering resistance development. Our results show that IPD072Aa binds to receptors in WCR gut that are different than those utilized by current commercial traits and its targeted killing of midgut cells results in larval death.


Assuntos
Bacillus thuringiensis , Besouros , Inseticidas , Pseudomonas chlororaphis , Animais , Zea mays/metabolismo , Pseudomonas chlororaphis/metabolismo , Endotoxinas/farmacologia , Larva , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Inseticidas/metabolismo , Proteínas de Bactérias/metabolismo , Células Epiteliais , Plantas Geneticamente Modificadas/metabolismo , Controle Biológico de Vetores/métodos
4.
J Invertebr Pathol ; 183: 107597, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33945817

RESUMO

AfIP-1A/1B is a two-component insecticidal protein identified from the soil bacterium Alcaligenes faecalis that has high activity against western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte). Previous results revealed that AfIP-1A/1B is cross-resistant to the binary protein from Bacillus thuringiensis (Bt), Cry34Ab1/Cry35Ab1 (also known as Gpp34Ab1/Tpp35Ab1; Crickmore et al., 2020), which was attributed to shared binding sites in WCR gut tissue (Yalpani et al., 2017). To better understand the interaction of AfIP-1A/1B with its receptor, we have systematically evaluated the binding of these proteins with WCR brush border membrane vesicles (BBMVs). Our findings show that AfIP-1A binds directly to BBMVs, while AfIP-1B does not; AfIP-1B binding only occurred in the presence of AfIP-1A which was accompanied by the presence of stable, high molecular weight oligomers of AfIP-1B observed on denaturing protein gels. Additionally, we show that AfIP-1A/1B forms pores in artificial lipid membranes. Finally, binding of AfIP-1A/1B was found to be reduced in BBMVs from Cry34Ab1/Cry35Ab1-resistant WCR where Cry34Ab1/Cry35Ab1 binding was also reduced. The reduced binding of both proteins is consistent with recognition of a shared receptor that has been altered in the resistant strain. The coordination of AfIP-1B binding by AfIP-1A, the similar structures between AfIP-1A and Cry34Ab1, along with their shared binding sites and cross-resistance, suggest a similar role for AfIP1A and Cry34Ab1 in receptor recognition and docking site for their cognate partners, AfIP-1B and Cry35Ab1, respectively.


Assuntos
Alcaligenes faecalis/genética , Proteínas de Bactérias/genética , Inseticidas/farmacologia , Mariposas/genética , Alcaligenes faecalis/química , Alcaligenes faecalis/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Agentes de Controle Biológico/química , Agentes de Controle Biológico/metabolismo , Trato Gastrointestinal/microbiologia , Controle de Insetos , Inseticidas/química , Larva/genética , Larva/crescimento & desenvolvimento , Larva/microbiologia , Mariposas/crescimento & desenvolvimento , Mariposas/microbiologia , Controle Biológico de Vetores
5.
Transgenic Res ; 30(2): 201-206, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33761048

RESUMO

Newly expressed proteins in genetically engineered crops are evaluated for potential cross reactivity to known allergens as part of their safety assessment. This assessment uses a weight-of-evidence approach. Two key components of this allergenicity assessment include any history of safe human exposure to the protein and/or the source organism from which it was originally derived, and bioinformatic analysis identifying amino acid sequence relatedness to known allergens. Phosphomannose-isomerase (PMI) has been expressed in commercialized genetically engineered (GE) crops as a selectable marker since 2010 with no known reports of allergy, which supports a history of safe exposure, and GE events expressing the PMI protein have been approved globally based on expert safety analysis. Bioinformatic analyses identified an eight-amino-acid contiguous match between PMI and a frog parvalbumin allergen (CAC83047.1). While short amino acid matches have been shown to be a poor predictor of allergen cross reactivity, most regulatory bodies require such matches be assessed in support of the allergenicity risk assessment. Here, this match is shown to be of negligible risk of conferring cross reactivity with known allergens.


Assuntos
Alérgenos/imunologia , Biologia Computacional/métodos , Hipersensibilidade Alimentar/imunologia , Manose-6-Fosfato Isomerase/imunologia , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas/imunologia , Zea mays/imunologia , Alérgenos/genética , Sequência de Aminoácidos , Reações Cruzadas , Hipersensibilidade Alimentar/genética , Humanos , Manose-6-Fosfato Isomerase/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Homologia de Sequência , Zea mays/genética
6.
Sci Rep ; 10(1): 15830, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985523

RESUMO

Western corn rootworm (WCR), Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is a serious insect pest in the major corn growing areas of North America and in parts of Europe. WCR populations with resistance to Bacillus thuringiensis (Bt) toxins utilized in commercial transgenic traits have been reported, raising concerns over their continued efficacy in WCR management. Understanding the modes of action of Bt toxins is important for WCR control and resistance management. Although different classes of proteins have been identified as Bt receptors for lepidopteran insects, identification of receptors in WCR has been limited with no reports of functional validation. Our results demonstrate that heterologous expression of DvABCB1 in Sf9 and HEK293 cells conferred sensitivity to the cytotoxic effects of Cry3A toxins. The result was further validated using knockdown of DvABCB1 by RNAi which rendered WCR larvae insensitive to a Cry3A toxin. However, silencing of DvABCB2 which is highly homologous to DvABCB1 at the amino acid level, did not reduce the sensitivity of WCR larvae to a Cry3A toxin. Furthermore, our functional studies corroborate different mode-of-actions for other insecticidal proteins including Cry34Ab1/35Ab1, Cry6Aa1, and IPD072Aa against WCR. Finally, reduced expression and alternatively spliced transcripts of DvABCB1 were identified in a mCry3A-resistant strain of WCR. Our results provide the first clear demonstration of a functional receptor in the molecular mechanism of Cry3A toxicity in WCR and confirmed its role in the mechanism of resistance in a mCry3A resistant strain of WCR.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Besouros/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas de Insetos/metabolismo , Zea mays , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Besouros/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Resistência a Herbicidas/genética , Humanos , Proteínas de Insetos/genética , Larva , Raízes de Plantas , Polimorfismo de Nucleotídeo Único/genética , Reação em Cadeia da Polimerase em Tempo Real
7.
Toxins (Basel) ; 11(7)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31266212

RESUMO

Various lepidopteran insects are responsible for major crop losses worldwide. Although crop plant varieties developed to express Bacillus thuringiensis (Bt) proteins are effective at controlling damage from key lepidopteran pests, some insect populations have evolved to be insensitive to certain Bt proteins. Here, we report the discovery of a family of homologous proteins, two of which we have designated IPD083Aa and IPD083Cb, which are from Adiantum spp. Both proteins share no known peptide domains, sequence motifs, or signatures with other proteins. Transgenic soybean or corn plants expressing either IPD083Aa or IPD083Cb, respectively, show protection from feeding damage by several key pests under field conditions. The results from comparative studies with major Bt proteins currently deployed in transgenic crops indicate that the IPD083 proteins function by binding to different target sites. These results indicate that IPD083Aa and IPD083Cb can serve as alternatives to traditional Bt-based insect control traits with potential to counter insect resistance to Bt proteins.


Assuntos
Adiantum/genética , Glycine max/genética , Inseticidas , Mariposas , Controle Biológico de Vetores , Proteínas de Plantas/genética , Zea mays/genética , Animais , Proteção de Cultivos , Plantas Geneticamente Modificadas , Proteínas Recombinantes/toxicidade
8.
PLoS One ; 14(1): e0210491, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30629687

RESUMO

The western corn rootworm (WCR, Diabrotica virgifera virgifera) gene, dvssj1, is a putative homolog of the Drosophila melanogaster gene, snakeskin (ssk). This gene encodes a membrane protein associated with the smooth septate junction (SSJ) which is required for the proper barrier function of the epithelial lining of insect intestines. Disruption of DVSSJ integrity by RNAi technique has been shown previously to be an effective approach for corn rootworm control, by apparent suppression of production of DVSSJ1 protein leading to growth inhibition and mortality. To understand the mechanism that leads to the death of WCR larvae by dvssj1 double-stranded RNA, we examined the molecular characteristics associated with SSJ functions during larval development. Dvssj1 dsRNA diet feeding results in dose-dependent suppression of mRNA and protein; this impairs SSJ formation and barrier function of the midgut and results in larval mortality. These findings suggest that the malfunctioning of the SSJ complex in midgut triggered by dvssj1 silencing is the principal cause of WCR death. This study also illustrates that dvssj1 is a midgut-specific gene in WCR and its functions are consistent with biological functions described for ssk.


Assuntos
Besouros/efeitos dos fármacos , Besouros/genética , Controle de Insetos/métodos , RNA de Cadeia Dupla/farmacologia , Zea mays/parasitologia , Animais , Besouros/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes de Insetos/efeitos dos fármacos , Proteínas de Insetos/genética , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Proteínas de Membrana/genética , Controle Biológico de Vetores/métodos , Interferência de RNA , RNA Mensageiro/genética
9.
Sci Rep ; 8(1): 17805, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30546034

RESUMO

The western corn rootworm (WCR) Diabrotica virgifera virgifera causes substantial damage in corn. Genetically modified (GM) plants expressing some Bacillus thuringiensis (Bt) insecticidal Cry proteins efficiently controlled this pest. However, changes in WCR susceptibility to these Bt traits have evolved and identification of insecticidal proteins with different modes of action against WCR is necessary. We show here for the first time that Cyt1Aa from Bt exhibits toxicity against WCR besides to the dipteran Aedes aegypti larvae. Cyt1Aa is a pore-forming toxin that shows no cross-resistance with mosquitocidal Cry toxins. We characterized different mutations in helix α-A from Cyt1Aa. Two mutants (A61C and A59C) exhibited reduced or absent hemolytic activity but retained toxicity to A. aegypti larvae, suggesting that insecticidal and hemolytic activities of Cyt1Aa are independent activities. These mutants were still able to form oligomers in synthetic lipid vesicles and to synergize Cry11Aa toxicity. Remarkably, mutant A61C showed a five-fold increase insecticidal activity against mosquito and almost 11-fold higher activity against WCR. Cyt1Aa A61C mutant was as potent in killing WCR that were selected for resistance to mCry3A as it was against unselected WCR indicating that this toxin could be a useful resistance management option in the control of WCR.


Assuntos
Bacillus thuringiensis , Proteínas de Bactérias , Besouros/crescimento & desenvolvimento , Endotoxinas , Proteínas Hemolisinas , Mutação de Sentido Incorreto , Controle Biológico de Vetores , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Endotoxinas/genética , Endotoxinas/toxicidade , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidade , Inseticidas/toxicidade
10.
eNeuro ; 5(5)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30255128

RESUMO

Reproductive endocrine disorders are prominent comorbidities of temporal lobe epilepsy (TLE) in both men and women. The neural mechanisms underlying these comorbidities remain unclear, but hypothalamic gonadotropin-releasing hormone (GnRH) neurons may be involved. Here, we report the first direct demonstrations of aberrant GnRH neuron function in an animal model of epilepsy. Recordings of GnRH neuron firing and excitability were made in acute mouse brain slices prepared two months after intrahippocampal injection of kainate (KA) or control saline, a well-established TLE model in which most females develop comorbid estrous cycle disruption. GnRH neurons from control females showed elevated firing and excitability on estrus compared with diestrus. By contrast, cells from KA-injected females that developed prolonged, disrupted estrous cycles (KA-long) showed the reverse pattern. Firing rates of cells from KA-injected females that maintained regular cycles (KA-regular) were not different from controls on diestrus, but were reduced on estrus. In KA-injected males, only GnRH neurons in the medial septum displayed elevated firing. In contrast to the diestrus versus estrus and sex-specific changes in firing, GnRH neuron intrinsic excitability was elevated in all KA-injected groups, indicating a role for afferent synaptic and neuromodulatory inputs in shaping overall changes in firing activity. Furthermore, KA-injected females showed cycle-stage-specific changes in circulating sex steroids on diestrus and estrus that also differed between KA-long and KA-regular groups. Together, these findings reveal that the effects of epilepsy on the neural control of reproduction are dynamic across the estrous cycle, distinct in association with comorbid estrous cycle disruption severity, and sex-specific.


Assuntos
Epilepsia do Lobo Temporal/fisiopatologia , Ciclo Estral/fisiologia , Hipotálamo/fisiologia , Caracteres Sexuais , Animais , Epilepsia do Lobo Temporal/genética , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Masculino , Camundongos Transgênicos , Neurônios/fisiologia
11.
PLoS One ; 13(9): e0203160, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30183751

RESUMO

RNA interference (RNAi)-based technology shows great potential for use in agriculture, particularly for management of costly insect pests. In the decade since the insecticidal effects of environmentally-introduced RNA were first reported, this treatment has been applied to several types of insect pests. Through the course of those efforts, it has become apparent that different insects exhibit a range of sensitivity to environmentally-introduced RNAs. The variation in responses across insect is not well-understood, with differences in the underlying RNAi mechanisms being one explanation. This study evaluates eight proteins among three agricultural pests whose responses to environmental RNAi are known to differ: western corn rootworm (Diabrotica virgifera virgifera), fall armyworm (Spodoptera frugiperda), and southern green stink bug (Nezara viridula). These proteins have been identified in various organisms as centrally involved in facilitating the microRNA- and small interfering-RNA-mediated interference responses. Various bioinformatics tools, as well as gene expression profiling, were used to identify and evaluate putative homologues for characteristics that may contribute to the differing responses of these insects, such as the absence of critical functional domains within expressed sequences, the absence of entire gene sequences, or unusually low or undetectable expression of critical genes. Though many similarities were observed, the number of isoforms and expression levels of double-stranded RNA-binding and argonaute proteins varied across insect. Differences among key RNAi machinery genes of these three pests may impact the function of their RNAi pathways, and therefore, their respective responses to exogenous RNAs.


Assuntos
Besouros/metabolismo , Heterópteros/metabolismo , Proteínas de Insetos/metabolismo , Lepidópteros/metabolismo , Interferência de RNA/fisiologia , Animais , Besouros/genética , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Heterópteros/genética , Proteínas de Insetos/genética , Lepidópteros/genética , Masculino , MicroRNAs/metabolismo , Controle Biológico de Vetores , RNA Interferente Pequeno/metabolismo , Especificidade da Espécie
12.
Sci Rep ; 8(1): 7858, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29777111

RESUMO

Western corn rootworm (Diabrotica virgifera virgifera) is a serious agricultural pest known for its high adaptability to various management strategies, giving rise to a continual need for new control options. Transgenic maize expressing insecticidal RNAs represents a novel mode of action for rootworm management that is dependent on the RNA interference (RNAi) pathways of the insect for efficacy. Preliminary evidence suggests that western corn rootworm could develop broad resistance to all insecticidal RNAs through changes in RNAi pathway genes; however, the likelihood of field-evolved resistance occurring through this mechanism remains unclear. In the current study, eight key genes involved in facilitating interference in the microRNA and small interfering RNA pathways were targeted for knockdown in order to evaluate impact on fitness of western corn rootworm. These genes include drosha, dicer-1, dicer-2, pasha, loquacious, r2d2, argonaute 1, and argonaute 2. Depletion of targeted transcripts in rootworm larvae led to changes in microRNA expression, decreased ability to pupate, reduced adult beetle emergence, and diminished reproductive capacity. The observed effects do not support evolution of resistance through changes in expression of these eight genes due to reduced insect fitness.


Assuntos
Interferência de RNA , RNA de Cadeia Dupla/genética , Zea mays/genética , Animais , Besouros/crescimento & desenvolvimento , Besouros/fisiologia , Regulação da Expressão Gênica , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , MicroRNAs/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/parasitologia , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/antagonistas & inibidores , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ribonuclease III/antagonistas & inibidores , Ribonuclease III/genética , Ribonuclease III/metabolismo , Zea mays/metabolismo , Zea mays/parasitologia
13.
Plant Biotechnol J ; 16(2): 649-659, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28796437

RESUMO

The coleopteran insect western corn rootworm (WCR, Diabrotica virgifera virgifera) is an economically important pest in North America and Europe. Transgenic corn plants producing Bacillus thuringiensis (Bt) insecticidal proteins have been useful against this devastating pest, but evolution of resistance has reduced their efficacy. Here, we report the discovery of a novel insecticidal protein, PIP-47Aa, from an isolate of Pseudomonas mosselii. PIP-47Aa sequence shows no shared motifs, domains or signatures with other known proteins. Recombinant PIP-47Aa kills WCR, two other corn rootworm pests (Diabrotica barberi and Diabrotica undecimpunctata howardi) and two other beetle species (Diabrotica speciosa and Phyllotreta cruciferae), but it was not toxic to the spotted lady beetle (Coleomegilla maculata) or seven species of Lepidoptera and Hemiptera. Transgenic corn plants expressing PIP-47Aa show significant protection from root damage by WCR. PIP-47Aa kills a WCR strain resistant to mCry3A and does not share rootworm midgut binding sites with mCry3A or AfIP-1A/1B from Alcaligenes that acts like Cry34Ab1/Cry35Ab1. Our results indicate that PIP-47Aa is a novel insecticidal protein for controlling the corn rootworm pests.


Assuntos
Bacillus thuringiensis/metabolismo , Zea mays/metabolismo , Zea mays/microbiologia , Animais , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia
14.
Mol Plant Microbe Interact ; 30(10): 842-851, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28703029

RESUMO

Viroids are the smallest known plant pathogens that exploit host systems for their replication and cause diseases in many hosts. In this study, the host response of hop plants to Hop stunt viroid (HSVd) infection was studied through transcriptome analysis. RNA sequence analysis of hop leaves infected with HSVd revealed dynamic changes in hop gene expression. Defense-related genes and genes involved in lipid and terpenoid metabolism are the major categories that showed differential expression due to HSVd infection. Additionally, the effect of HSVd on development of hop powdery mildew (Podospheara macularis) (HPM) was studied. Transcriptome analysis followed by quantitative reverse transcription-polymerase chain reaction analysis showed that transcript levels of pathogenesis-related (PR) genes such as PR protein 1, chitinase, and thaumatin-like protein genes are induced in leaves infected with HPM alone. The response in these genes to HPM is significantly down-regulated in leaves with HSVd-HPM mixed infection. These results confirm that HSVd alters host metabolism, physiology, and plant defense responses. Nevertheless, in detached leaf assays, HPM consistently expanded faster on HSVd-negative leaves relative to HSVd-positive leaves. Although HSVd infection suppresses elements associated with the host immunity response, infection by HSVd is antagonistic to HPM infection of hops.


Assuntos
Ascomicetos/fisiologia , Interações Hospedeiro-Patógeno/genética , Humulus/genética , Humulus/virologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Transcriptoma/genética , Ascomicetos/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Humulus/microbiologia , Folhas de Planta/virologia , Reprodutibilidade dos Testes
15.
Sci Rep ; 7(1): 3063, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28596570

RESUMO

Crops expressing Bacillus thuringiensis (Bt)-derived insecticidal protein genes have been commercially available for over 15 years and are providing significant value to growers. However, there remains the need for alternative insecticidal actives due to emerging insect resistance to certain Bt proteins. A screen of bacterial strains led to the discovery of a two-component insecticidal protein named AfIP-1A/1B from an Alcaligenes faecalis strain. This protein shows selectivity against coleopteran insects including western corn rootworm (WCR). Transgenic maize plants expressing AfIP-1A/1B demonstrate strong protection from rootworm injury. Surprisingly, although little sequence similarity exists to known insecticidal proteins, efficacy tests using WCR populations resistant to two different Cry proteins show that AfIP-1A/1B and mCry3A differ in their mode of action while AfIP-1A/1B and the binary Cry34Ab1/Cry35Ab1 protein share a similar mode. These findings are supported by results of competitive binding assays and the similarity of the x-ray structure of AfIP-1A to Cry34Ab1. Our work indicates that insecticidal proteins obtained from a non-Bt bacterial source can be useful for developing genetically modified crops and can function similarly to familiar proteins from Bt.


Assuntos
Alcaligenes/genética , Proteínas de Bactérias/genética , Agentes de Controle Biológico/toxicidade , Besouros/efeitos dos fármacos , Endotoxinas/genética , Proteínas Hemolisinas/genética , Alcaligenes/metabolismo , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/toxicidade , Agentes de Controle Biológico/metabolismo , Clonagem Molecular , Besouros/patogenicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade
16.
Plant Dis ; 101(4): 607-612, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30677365

RESUMO

Hop stunt viroid (HSVd) is an economically important pathogen that reduces growth and yield of hops. Visual symptoms of infected hop are highly dependent on cultivar. A study was conducted using six cultivars of hop to determine the impact on yield. Average dry cone yields of infected 'Glacier', 'Cascade', and 'Willamette' were reduced by 62, 14, and 34%, respectively, relative to noninoculated healthy plants. No significant yield reduction was observed for 'Nugget', 'Columbus', and 'Galena'. The α-acid and ß-acid contents showed a parallel pattern. Horticultural parameters of Willamette and Nugget were measured in the final year of the study. Internode length, shoot length, and side-arm length were reduced by 29, 26, and 73%, respectively, for infected Willamette bines relative to noninfected bines; no effects were observed resulting from infection of Nugget. To understand the current potential impact of HSVd, a survey was conducted to determine its distribution in central Washington. The survey revealed that 17% of hop plants tested are infected. Hop yield and hop plant longevity will be significantly affected by this level of infection. Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

17.
Gigascience ; 5: 28, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27333791

RESUMO

BACKGROUND: The pink bollworm Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) is one of the world's most important pests of cotton. Insecticide sprays and transgenic cotton producing toxins of the bacterium Bacillus thuringiensis (Bt) are currently used to manage this pest. Bt toxins kill susceptible insects by specifically binding to and destroying midgut cells, but they are not toxic to most other organisms. Pink bollworm is useful as a model for understanding insect responses to Bt toxins, yet advances in understanding at the molecular level have been limited because basic genomic information is lacking for this cosmopolitan pest. Here, we have sequenced, de novo assembled and annotated a comprehensive larval midgut transcriptome from a susceptible strain of pink bollworm. FINDINGS: A de novo transcriptome assembly for the midgut of P. gossypiella was generated containing 46,458 transcripts (average length of 770 bp) derived from 39,874 unigenes. The size of the transcriptome is similar to published midgut transcriptomes of other Lepidoptera and includes up to 91 % annotated contigs. The dataset is publicly available in NCBI and GigaDB as a resource for researchers. CONCLUSIONS: Foundational knowledge of protein-coding genes from the pink bollworm midgut is critical for understanding how this important insect pest functions. The transcriptome data presented here represent the first large-scale molecular resource for this species, and may be used for deciphering relevant midgut proteins critical for xenobiotic detoxification, nutrient digestion and allocation, as well as for the discovery of protein receptors important for Bt intoxication.


Assuntos
Endotoxinas/farmacologia , Perfilação da Expressão Gênica/métodos , Mariposas/crescimento & desenvolvimento , Análise de Sequência de RNA/métodos , Animais , Mapeamento de Sequências Contíguas , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Intestinos/química , Larva/efeitos dos fármacos , Anotação de Sequência Molecular , Mariposas/efeitos dos fármacos , Mariposas/genética , Transcriptoma
18.
J Econ Entomol ; 109(3): 1369-1377, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27016600

RESUMO

Several Bt maize events expressing various insecticidal Cry protein genes have been commercialized for management of western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae). We used high efficacy (>99.7%) experimental maize events that express mCry3A for selections under laboratory conditions to develop a western corn rootworm colony resistant to mCry3A at higher levels than published results. The resistance ratio (RR) to mCry3A was >97-fold based on LC 50 values in diet-based bioassays after six generations of selections when compared to that of an unselected Control colony. Using a sublethal seedling assay (SSA) method, we confirmed that the colony had no cross-resistance to maize event DAS-59122-7, which expresses Cry34/35Ab. Reciprocal crosses between the mCry3A-resistant colony and the susceptible colony were performed to test the inheritance of resistance. Larval survival and development evaluated by the SSA method indicated that resistance to mCry3A was inherited autosomally and was incompletely recessive (h = 0.23-0.25). Specific binding of mCry3A to brush border membrane vesicles of midgut tissue revealed reduced binding in the resistant colony when compared to binding in the susceptible colony. This is the first report where resistance in western corn rootworm has been shown to involve reduced binding of a Cry3-class protein in midgut tissue.

19.
Plant Dis ; 100(6): 1212-1221, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30682268

RESUMO

Host resistance, both quantitative and qualitative, is the preferred long-term approach for disease management in many pathosystems, including powdery mildew of hop (Podosphaera macularis). In 2012, an epidemic of powdery mildew occurred in Washington and Idaho on previously resistant cultivars whose resistance was putatively based on the gene designated R6. In 2013, isolates capable of causing severe disease on cultivars with R6-based resistance were confirmed in Oregon and became widespread during 2014. Surveys of commercial hop yards during 2012 to 2014 documented that powdery mildew is now widespread on cultivars possessing R6 resistance in Washington and Oregon, and the incidence of disease is progressively increasing. Pathogenic fitness, race, and mating type of R6-virulent isolates were compared with isolates of P. macularis lacking R6 virulence. All isolates were positive for the mating type idiomorph MAT1-1 and were able to overcome resistance genes Rb, R3, and R5 but not R1 or R2. In addition, R6-virulent isolates were shown to infect differential cultivars reported to possess the R6 gene and also the R4 gene, although R4 has not yet been broadly deployed in the United States. R6-virulent isolates were not detected from the eastern United States during 2012 to 2015. In growth chamber studies, R6-virulent isolates of P. macularis had a significantly longer latent period and produced fewer lesions on plants with R6 as compared with plants lacking R6, indicating a fitness cost to the fungus. R6-virulent isolates also produced fewer conidia when compared with isolates lacking R6 virulence, independent of whether the isolates were grown on a plant with or without R6. Thus, it is possible that the fitness cost of R6 virulence occurs regardless of host genotype. In field studies, powdery mildew was suppressed by at least 50% on plants possessing R6 as compared with those without R6 when coinoculated with R6-virulent and avirulent isolates. R6 virulence in P. macularis appears to be race specific and, at this time, imposes a measurable fitness penalty on the fungus. Resistance genes R1 and R2 appear to remain effective against R6-virulent isolates of P. macularis in the U.S. Pacific Northwest.

20.
Plant Dis ; 100(6): 1153-1160, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30682291

RESUMO

Canopy management is an important aspect of control of powdery mildew diseases and may influence the intensity of fungicide applications required to suppress disease. In hop, powdery mildew (caused by Podosphaera macularis) is most damaging to cones when infection occurs during bloom and the juvenile stages of cone development. Experiments were conducted over 3 years to evaluate whether fungicide applications could be ceased after the most susceptible stages of cone development (late July) without unduly affecting crop yield and quality when disease pressure was moderated with varying levels of basal foliage removal. In experimental plots of 'Galena' hop, the incidence of leaves with powdery mildew was similar whether fungicides were ceased in late July or made in late August. Disease levels on leaves were unaffected by the intensity of basal foliage removal, whereas the intensity of basal foliage removal interacted with the duration of fungicide applications to affect disease levels on cones. Similar experiments conducted in large plots of 'Tomahawk' hop in a commercial hop yard similarly found no significant impact on disease levels on leaves from either the duration of fungicide applications or intensity of basal foliage removal. In contrast, on cones, application of fungicides into August had a modest, suppressive effect on powdery mildew. There was also some evidence that the level of powdery mildew on cones associated with fungicide treatment was influenced by the intensity of basal foliage removal. When fungicide applications ceased in late July, there was a progressive decrease in the incidence of cones with powdery mildew with increasing intensity of basal foliage removal. Removing basal foliage two to three times allowed fungicide applications to be terminated in late July rather than late August without diminishing disease control on cones, yield, or cone quality factors. Thus, this study further establishes that fungicide applications made during the early stages of hop cone development have the strongest effect on suppression of powdery mildew on cones. The additive effect of fungicide applications targeted to the periods of greatest cone susceptibility and canopy management to reduce disease favorability may obviate the need for fungicide applications later in the season. This appears to be a viable strategy in mature hop yards of certain cultivars when disease pressure is not excessively high.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA