Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 41(2): 304-322.e7, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36638784

RESUMO

Immune checkpoint blockade (ICB) can produce durable responses against cancer. We and others have found that a subset of patients experiences paradoxical rapid cancer progression during immunotherapy. It is poorly understood how tumors can accelerate their progression during ICB. In some preclinical models, ICB causes hyperprogressive disease (HPD). While immune exclusion drives resistance to ICB, counterintuitively, patients with HPD and complete response (CR) following ICB manifest comparable levels of tumor-infiltrating CD8+ T cells and interferon γ (IFNγ) gene signature. Interestingly, patients with HPD but not CR exhibit elevated tumoral fibroblast growth factor 2 (FGF2) and ß-catenin signaling. In animal models, T cell-derived IFNγ promotes tumor FGF2 signaling, thereby suppressing PKM2 activity and decreasing NAD+, resulting in reduction of SIRT1-mediated ß-catenin deacetylation and enhanced ß-catenin acetylation, consequently reprograming tumor stemness. Targeting the IFNγ-PKM2-ß-catenin axis prevents HPD in preclinical models. Thus, the crosstalk of core immunogenic, metabolic, and oncogenic pathways via the IFNγ-PKM2-ß-catenin cascade underlies ICB-associated HPD.


Assuntos
Neoplasias , beta Catenina , Animais , Linfócitos T CD8-Positivos , Fator 2 de Crescimento de Fibroblastos , Neoplasias/terapia , Neoplasias/patologia , Progressão da Doença , Interferon gama , Imunoterapia/métodos
2.
JCI Insight ; 7(20)2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36099022

RESUMO

Transforming growth factor-ß1 (TGF-ß1) plays a central role in normal and aberrant wound healing, but the precise mechanism in the local environment remains elusive. Here, using a mouse model of aberrant wound healing resulting in heterotopic ossification (HO) after traumatic injury, we find autocrine TGF-ß1 signaling in macrophages, and not mesenchymal stem/progenitor cells, is critical in HO formation. In-depth single-cell transcriptomic and epigenomic analyses in combination with immunostaining of cells from the injury site demonstrated increased TGF-ß1 signaling in early infiltrating macrophages, with open chromatin regions in TGF-ß1-stimulated genes at binding sites specific for transcription factors of activated TGF-ß1 (SMAD2/3). Genetic deletion of TGF-ß1 receptor type 1 (Tgfbr1; Alk5), in macrophages, resulted in increased HO, with a trend toward decreased tendinous HO. To bypass the effect seen by altering the receptor, we administered a systemic treatment with TGF-ß1/3 ligand trap TGF-ßRII-Fc, which resulted in decreased HO formation and a delay in macrophage infiltration to the injury site. Overall, our data support the role of the TGF-ß1/ALK5 signaling pathway in HO.


Assuntos
Ossificação Heterotópica , Fator de Crescimento Transformador beta1 , Humanos , Cromatina/metabolismo , Ligantes , Macrófagos/metabolismo , Ossificação Heterotópica/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Fator de Crescimento Transformador beta1/metabolismo , Cicatrização , Fator de Crescimento Transformador beta/metabolismo
3.
Stem Cell Reports ; 16(3): 626-640, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33606989

RESUMO

Heterotopic ossification (HO) is a form of pathological cell-fate change of mesenchymal stem/precursor cells (MSCs) that occurs following traumatic injury, limiting range of motion in extremities and causing pain. MSCs have been shown to differentiate to form bone; however, their lineage and aberrant processes after trauma are not well understood. Utilizing a well-established mouse HO model and inducible lineage-tracing mouse (Hoxa11-CreERT2;ROSA26-LSL-TdTomato), we found that Hoxa11-lineage cells represent HO progenitors specifically in the zeugopod. Bioinformatic single-cell transcriptomic and epigenomic analyses showed Hoxa11-lineage cells are regionally restricted mesenchymal cells that, after injury, gain the potential to undergo differentiation toward chondrocytes, osteoblasts, and adipocytes. This study identifies Hoxa11-lineage cells as zeugopod-specific ectopic bone progenitors and elucidates the fate specification and multipotency that mesenchymal cells acquire after injury. Furthermore, this highlights homeobox patterning genes as useful tools to trace region-specific progenitors and enable location-specific gene deletion.


Assuntos
Osso e Ossos/metabolismo , Diferenciação Celular , Linhagem da Célula , Células-Tronco Mesenquimais/metabolismo , Ossificação Heterotópica/genética , Ossificação Heterotópica/metabolismo , Osteogênese , Adipócitos/metabolismo , Animais , Condrócitos/metabolismo , Modelos Animais de Doenças , Expressão Ectópica do Gene , Epigenômica , Feminino , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Ossificação Heterotópica/patologia , Osteoblastos/metabolismo , Análise de Célula Única , Tendões/metabolismo
4.
J Clin Invest ; 130(10): 5444-5460, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673290

RESUMO

Cells sense the extracellular environment and mechanical stimuli and translate these signals into intracellular responses through mechanotransduction, which alters cell maintenance, proliferation, and differentiation. Here we use a mouse model of trauma-induced heterotopic ossification (HO) to examine how cell-extrinsic forces impact mesenchymal progenitor cell (MPC) fate. After injury, single-cell (sc) RNA sequencing of the injury site reveals an early increase in MPC genes associated with pathways of cell adhesion and ECM-receptor interactions, and MPC trajectories to cartilage and bone. Immunostaining uncovers active mechanotransduction after injury with increased focal adhesion kinase signaling and nuclear translocation of transcriptional coactivator TAZ, inhibition of which mitigates HO. Similarly, joint immobilization decreases mechanotransductive signaling, and completely inhibits HO. Joint immobilization decreases collagen alignment and increases adipogenesis. Further, scRNA sequencing of the HO site after injury with or without immobilization identifies gene signatures in mobile MPCs correlating with osteogenesis, and signatures from immobile MPCs with adipogenesis. scATAC-seq in these same MPCs confirm that in mobile MPCs, chromatin regions around osteogenic genes are open, whereas in immobile MPCs, regions around adipogenic genes are open. Together these data suggest that joint immobilization after injury results in decreased ECM alignment, altered MPC mechanotransduction, and changes in genomic architecture favoring adipogenesis over osteogenesis, resulting in decreased formation of HO.


Assuntos
Extremidades/lesões , Células-Tronco Mesenquimais/patologia , Células-Tronco Mesenquimais/fisiologia , Ossificação Heterotópica/etiologia , Restrição Física , Aciltransferases , Adipogenia/genética , Animais , Diferenciação Celular , Linhagem da Célula , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Quinase 1 de Adesão Focal/deficiência , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Humanos , Masculino , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ossificação Heterotópica/patologia , Ossificação Heterotópica/fisiopatologia , Osteogênese/genética , Restrição Física/efeitos adversos , Restrição Física/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA