Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Biol Psychiatry Glob Open Sci ; 4(3): 100309, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38690260

RESUMO

Background: Fear overgeneralization is a promising pathogenic mechanism of clinical anxiety. A dominant model posits that hippocampal pattern separation failures drive overgeneralization. Hippocampal network-targeted transcranial magnetic stimulation (HNT-TMS) has been shown to strengthen hippocampal-dependent learning/memory processes. However, no study has examined whether HNT-TMS can alter fear learning/memory. Methods: Continuous theta burst stimulation was delivered to individualized left posterior parietal stimulation sites derived via seed-based connectivity, precision functional mapping, and electric field modeling methods. A vertex control site was also stimulated in a within-participant, randomized controlled design. Continuous theta burst stimulation was delivered prior to 2 visual discrimination tasks (1 fear based, 1 neutral). Multilevel models were used to model and test data. Participants were undergraduates with posttraumatic stress symptoms (final n = 25). Results: Main analyses did not indicate that HNT-TMS strengthened discrimination. However, multilevel interaction analyses revealed that HNT-TMS strengthened fear discrimination in participants with lower fear sensitization (indexed by responses to a control stimulus with no similarity to the conditioned fear cue) across multiple indices (anxiety ratings: ß = 0.10, 95% CI, 0.04 to 0.17, p = .001; risk ratings: ß = 0.07, 95% CI, 0.00 to 0.13, p = .037). Conclusions: Overgeneralization is an associative process that reflects deficient discrimination of the fear cue from similar cues. In contrast, sensitization reflects nonassociative responding unrelated to fear cue similarity. Our results suggest that HNT-TMS may selectively sharpen fear discrimination when associative response patterns, which putatively implicate the hippocampus, are more strongly engaged.


Fear overgeneralization is a promising pathogenic mechanism of clinical anxiety that is thought to be driven by deficient hippocampal discrimination. Using hippocampal network­targeted transcranial magnetic stimulation (HNT-TMS) in healthy participants with symptoms of posttraumatic stress, Webler et al. report that HNT-TMS did not strengthen discrimination overall, but it did strengthen fear discrimination in participants with lower fear sensitization. Sensitization reflects nonassociative fear responding unrelated to fear cue similarity and therefore is not expected to engage the hippocampal discrimination function. These results suggest that HNT-TMS may selectively sharpen fear discrimination when the hippocampal discrimination function is more strongly engaged.

2.
Nat Neurosci ; 27(5): 1000-1013, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38532024

RESUMO

Although the general location of functional neural networks is similar across individuals, there is vast person-to-person topographic variability. To capture this, we implemented precision brain mapping functional magnetic resonance imaging methods to establish an open-source, method-flexible set of precision functional network atlases-the Masonic Institute for the Developing Brain (MIDB) Precision Brain Atlas. This atlas is an evolving resource comprising 53,273 individual-specific network maps, from more than 9,900 individuals, across ages and cohorts, including the Adolescent Brain Cognitive Development study, the Developmental Human Connectome Project and others. We also generated probabilistic network maps across multiple ages and integration zones (using a new overlapping mapping technique, Overlapping MultiNetwork Imaging). Using regions of high network invariance improved the reproducibility of executive function statistical maps in brain-wide associations compared to group average-based parcellations. Finally, we provide a potential use case for probabilistic maps for targeted neuromodulation. The atlas is expandable to alternative datasets with an online interface encouraging the scientific community to explore and contribute to understanding the human brain function more precisely.


Assuntos
Encéfalo , Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adolescente , Masculino , Feminino , Adulto , Adulto Jovem , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Mapeamento Encefálico/métodos , Atlas como Assunto , Criança , Probabilidade , Vias Neurais/fisiologia
3.
J Invest Dermatol ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38417541

RESUMO

Necrobiosis lipoidica (NL) is a rare granulomatous disease. There are few effective treatments for NL. We sought to investigate the efficacy and safety of the Jak1/2 inhibitor, ruxolitnib, in the treatment of NL and identify the biomarkers associated with the disease and treatment response. We conducted an open-label, phase 2 study of ruxolitinib in 12 patients with NL. We performed transcriptomic analysis of tissue samples before and after treatment. At week 12, the mean NL lesion score decreased by 58.2% (SD = 28.7%, P = .003). Transcriptomic analysis demonstrated enrichment of type I and type II IFN pathways in baseline disease. Weighted gene coexpression network analysis demonstrated post-treatment changes in IFN pathways with key hub genes IFNG and signal transducer and activator of transcription 1 gene STAT1. Limitations include small sample size and a study group limited to patients with <10% body surface area. In conclusion, ruxolitinib is an effective treatment for NL and targets the key pathogenic mediators of the disease.

4.
Biol Psychiatry Glob Open Sci ; 4(1): 299-307, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38298781

RESUMO

Background: Intrusive traumatic re-experiencing domain (ITRED) was recently introduced as a novel perspective on posttraumatic psychopathology, proposing to focus research of posttraumatic stress disorder (PTSD) on the unique symptoms of intrusive and involuntary re-experiencing of the trauma, namely, intrusive memories, nightmares, and flashbacks. The aim of the present study was to explore ITRED from a neural network connectivity perspective. Methods: Data were collected from 9 sites taking part in the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) PTSD Consortium (n= 584) and included itemized PTSD symptom scores and resting-state functional connectivity (rsFC) data. We assessed the utility of rsFC in classifying PTSD, ITRED-only (no PTSD diagnosis), and trauma-exposed (TE)-only (no PTSD or ITRED) groups using a machine learning approach, examining well-known networks implicated in PTSD. A random forest classification model was built on a training set using cross-validation, and the averaged cross-validation model performance for classification was evaluated using the area under the curve. The model was tested using a fully independent portion of the data (test dataset), and the test area under the curve was evaluated. Results: rsFC signatures differentiated TE-only participants from PTSD and ITRED-only participants at about 60% accuracy. Conversely, rsFC signatures did not differentiate PTSD from ITRED-only individuals (45% accuracy). Common features differentiating TE-only participants from PTSD and ITRED-only participants mainly involved default mode network-related pathways. Some unique features, such as connectivity within the frontoparietal network, differentiated TE-only participants from one group (PTSD or ITRED-only) but to a lesser extent from the other group. Conclusions: Neural network connectivity supports ITRED as a novel neurobiologically based approach to classifying posttrauma psychopathology.

5.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38077010

RESUMO

Functional MRI (fMRI) data are severely distorted by magnetic field (B0) inhomogeneities which currently must be corrected using separately acquired field map data. However, changes in the head position of a scanning participant across fMRI frames can cause changes in the B0 field, preventing accurate correction of geometric distortions. Additionally, field maps can be corrupted by movement during their acquisition, preventing distortion correction altogether. In this study, we use phase information from multi-echo (ME) fMRI data to dynamically sample distortion due to fluctuating B0 field inhomogeneity across frames by acquiring multiple echoes during a single EPI readout. Our distortion correction approach, MEDIC (Multi-Echo DIstortion Correction), accurately estimates B0 related distortions for each frame of multi-echo fMRI data. Here, we demonstrate that MEDIC's framewise distortion correction produces improved alignment to anatomy and decreases the impact of head motion on resting-state functional connectivity (RSFC) maps, in higher motion data, when compared to the prior gold standard approach (i.e., TOPUP). Enhanced framewise distortion correction with MEDIC, without the requirement for field map collection, furthers the advantage of multi-echo over single-echo fMRI.

6.
bioRxiv ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961636

RESUMO

The characterization of individual functional brain organization with Precision Functional Mapping has provided important insights in recent years in adults. However, little is known about the ontogeny of inter-individual differences in brain functional organization during human development, but precise characterization of systems organization during periods of high plasticity might be most influential towards discoveries promoting lifelong health. Collecting and analyzing precision fMRI data during early development has unique challenges and emphasizes the importance of novel methods to improve data acquisition, processing, and analysis strategies in infant samples. Here, we investigate the applicability of two such methods from adult MRI research, multi-echo (ME) data acquisition and thermal noise removal with Noise reduction with distribution corrected principal component analysis (NORDIC), in precision fMRI data from three newborn infants. Compared to an adult example subject, T2* relaxation times calculated from ME data in infants were longer and more variable across the brain, pointing towards ME acquisition being a promising tool for optimizing developmental fMRI. The application of thermal denoising via NORDIC increased tSNR and the overall strength of functional connections as well as the split-half reliability of functional connectivity matrices in infant ME data. While our findings related to NORDIC denoising are coherent with the adult literature and ME data acquisition showed high promise, its application in developmental samples needs further investigation. The present work reveals gaps in our understanding of the best techniques for developmental brain imaging and highlights the need for further developmentally-specific methodological advances and optimizations, towards precision functional imaging in infants.

7.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873065

RESUMO

The Cingulo-Opercular network (CON) is an executive network of the human brain that regulates actions. CON is composed of many widely distributed cortical regions that are involved in top-down control over both lower-level (i.e., motor) and higher-level (i.e., cognitive) functions, as well as in processing of painful stimuli. Given the topographical and functional heterogeneity of the CON, we investigated whether subnetworks within the CON support separable aspects of action control. Using precision functional mapping (PFM) in 15 participants with > 5 hours of resting state functional connectivity (RSFC) and task data, we identified three anatomically and functionally distinct CON subnetworks within each individual. These three distinct subnetworks were linked to Decisions, Actions, and Feedback (including pain processing), respectively, in convergence with a meta-analytic task database. These Decision, Action and Feedback subnetworks represent pathways by which the brain establishes top-down goals, transforms those goals into actions, implemented as movements, and processes critical action feedback such as pain.

8.
Dev Cogn Neurosci ; 60: 101231, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36934605

RESUMO

Resting-state functional connectivity (RSFC) is a powerful tool for characterizing brain changes, but it has yet to reliably predict higher-order cognition. This may be attributed to small effect sizes of such brain-behavior relationships, which can lead to underpowered, variable results when utilizing typical sample sizes (N∼25). Inspired by techniques in genomics, we implement the polyneuro risk score (PNRS) framework - the application of multivariate techniques to RSFC data and validation in an independent sample. Utilizing the Adolescent Brain Cognitive Development® cohort split into two datasets, we explore the framework's ability to reliably capture brain-behavior relationships across 3 cognitive scores - general ability, executive function, learning & memory. The weight and significance of each connection is assessed in the first dataset, and a PNRS is calculated for each participant in the second. Results support the PNRS framework as a suitable methodology to inspect the distribution of connections contributing towards behavior, with explained variance ranging from 1.0 % to 21.4 %. For the outcomes assessed, the framework reveals globally distributed, rather than localized, patterns of predictive connections. Larger samples are likely necessary to systematically identify the specific connections contributing towards complex outcomes. The PNRS framework could be applied translationally to identify neurologically distinct subtypes of neurodevelopmental disorders.


Assuntos
Mapeamento Encefálico , Cognição , Adolescente , Humanos , Mapeamento Encefálico/métodos , Encéfalo , Fatores de Risco , Função Executiva , Imageamento por Ressonância Magnética/métodos
11.
Neuron ; 110(9): 1446-1449, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35512638

RESUMO

In a recent issue of Nature, Marek et al. (2022) demonstrate that cross-sectional brain-behavior correlations are often small and unreliable without large samples. This observation pushes human neuroscience toward study designs that either maximize sample sizes to detect small effects or maximize effect sizes using focused investigations.


Assuntos
Encéfalo , Neurociências , Estudos Transversais , Humanos , Reprodutibilidade dos Testes , Tamanho da Amostra
12.
J Cutan Pathol ; 49(8): 692-700, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35403265

RESUMO

BACKGROUND: Necrobiosis lipoidica (NL) is an uncommon granulomatous dermatosis that can occur in patients with or without associated diabetes mellitus (DM). Prior studies have attempted to determine distinctive histopathologic features of NL in patients with and without DM. METHODS: A retrospective review of 97 patients with NL was performed to determine the similar and distinctive histopathologic features in patients with DM and without DM. RESULTS: Of the 97 patients, 32% (n = 31) had DM. Epidermal acanthosis was seen more commonly in diabetics than nondiabetics (32.3% vs. 12.1%; p = 0.017). Naked (sarcoidal/tuberculoid) granulomas were more frequently observed in nondiabetics than diabetics (22.7% vs. 3.2%; p = 0.016). Eosinophils were more common in nondiabetics than diabetics (38.5% vs. 9.7%; p = 0.004), while neutrophilic infiltration was more common in diabetics than nondiabetics (45.2% vs. 17.5%; p = 0.004). CONCLUSIONS: This study corroborates well-documented histopathologic features of NL and shows distinctive histopathologic features of NL among patients with DM-I, DM-II, and without DM. These results support the hypothesis that there are different underlying drivers of NL between diabetics and nondiabetics.


Assuntos
Necrobiose Lipoídica , Diabetes Mellitus , Humanos , Necrobiose Lipoídica/patologia , Estudos Retrospectivos
13.
J Invest Dermatol ; 142(8): 2109-2116.e4, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35131254

RESUMO

Ruxolitinib is a Janus kinase 1/2 inhibitor that blocks signal transduction of interferon-gamma, a critical cytokine involved in the pathogenesis of cutaneous lichen planus (LP). In this prospective phase II study, we investigated the efficacy of topical ruxolitinib in cutaneous LP and performed transcriptomic analysis before and after therapy. Twelve patients with cutaneous LP applied topical ruxolitinib twice daily for 8 weeks. Primary endpoints were changes in total lesion count and changes in modified Composite Assessment of Index Lesion Severity score in index treated and untreated index control lesions at week 4. Total lesion count decreased by a median of 50 lesions (interquartile range 25, 723; P < 0.001). modified Composite Assessment of Index Lesion Severity scores decreased by a mean difference of 7.6 (standard deviation 8.8, P = 0.016) between index treated and control lesions. Type I and II interferon pathways were enriched in LP, and responsive disease displayed downregulation of interferon-stimulated genes. In this small pilot study, topical ruxolitinib was highly effective in the treatment of cutaneous LP. Transcriptomic analysis confirmed LP as an interferon-driven disease and downregulation of interferon-stimulated genes correlated with disease response.


Assuntos
Inibidores de Janus Quinases , Líquen Plano , Antivirais/uso terapêutico , Emolientes , Humanos , Interferon gama , Inibidores de Janus Quinases/uso terapêutico , Líquen Plano/tratamento farmacológico , Líquen Plano/patologia , Nitrilas , Projetos Piloto , Estudos Prospectivos , Pirazóis , Pirimidinas
15.
Cereb Cortex ; 32(13): 2868-2884, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34718460

RESUMO

The striatum and cerebral cortex are interconnected via multiple recurrent loops that play a major role in many neuropsychiatric conditions. Primate corticostriatal connections can be precisely mapped using invasive tract-tracing. However, noninvasive human research has not mapped these connections with anatomical precision, limited in part by the practice of averaging neuroimaging data across individuals. Here we utilized highly sampled resting-state functional connectivity MRI for individual-specific precision functional mapping (PFM) of corticostriatal connections. We identified ten individual-specific subnetworks linking cortex-predominately frontal cortex-to striatum, most of which converged with nonhuman primate tract-tracing work. These included separable connections between nucleus accumbens core/shell and orbitofrontal/medial frontal gyrus; between anterior striatum and dorsomedial prefrontal cortex; between dorsal caudate and lateral prefrontal cortex; and between middle/posterior putamen and supplementary motor/primary motor cortex. Two subnetworks that did not converge with nonhuman primates were connected to cortical regions associated with human language function. Thus, precision subnetworks identify detailed, individual-specific, neurobiologically plausible corticostriatal connectivity that includes human-specific language networks.


Assuntos
Corpo Estriado , Córtex Motor , Animais , Mapeamento Encefálico/métodos , Corpo Estriado/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem , Núcleo Accumbens , Córtex Pré-Frontal/diagnóstico por imagem , Putamen
16.
J Anim Physiol Anim Nutr (Berl) ; 106(1): 205-219, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34120377

RESUMO

Loggerhead sea turtles (Caretta caretta) are opportunistic carnivores that feed primarily on benthic invertebrates and fish. Sea turtle rehabilitation requires provision of a species-specific, balanced diet that supplies nutrition similar to that of a wild diet; this can be challenging because free-ranging loggerheads' diets vary depending on their life stage and geographic location, with predominant prey species dictated by local availability. The goal of this study was to better understand the nutritional needs of subadult and adult loggerheads in rehabilitation. This was accomplished by conducting a retrospective survey of stomach contents identified during gross necropsy of 153 deceased loggerheads that stranded in coastal Georgia, USA. A total of 288 different forage items were identified; the most frequently observed prey items belong to the subphylum Crustacea (N = 131), followed by bony fish (Osteichthyes; N = 45), gastropod mollusks (N = 40), bivalve mollusks (N = 23), and Atlantic horseshoe crabs (Limulus polyphemus; N = 15). The proportions of certain prey items differed significantly with turtle size; adult turtles ate proportionately more gastropods (p = 0.001), and subadults ate proportionately more fish (p = 0.01). Stomach contents information was used to determine common local prey items (blue crab, cannonball jellyfish, horseshoe crab, whelk), which were evaluated for nutritional content. Additionally, we compared hematology and plasma biochemistry profiles (including proteins, trace minerals, and vitamins) between four cohorts of loggerhead turtles, including free-ranging subadults and adults, nesting females, and loggerheads undergoing rehabilitation. This information was applied to inform a regionally specific, formulated diet for tube feeding, and a supplement containing vitamins and minerals for captive loggerheads, to more closely approximate the nutritional content of their natural diet. Assessing the regional and temporal variability in loggerhead diets is an important component in their effective conservation because resultant data can be used to help understand the impacts of environmental perturbations on benthic food webs.


Assuntos
Oligoelementos , Tartarugas , Animais , Feminino , Conteúdo Gastrointestinal , Estudos Retrospectivos , Sudeste dos Estados Unidos
20.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34404728

RESUMO

The hippocampus is critically important for a diverse range of cognitive processes, such as episodic memory, prospective memory, affective processing, and spatial navigation. Using individual-specific precision functional mapping of resting-state functional MRI data, we found the anterior hippocampus (head and body) to be preferentially functionally connected to the default mode network (DMN), as expected. The hippocampal tail, however, was strongly preferentially functionally connected to the parietal memory network (PMN), which supports goal-oriented cognition and stimulus recognition. This anterior-posterior dichotomy of resting-state functional connectivity was well-matched by differences in task deactivations and anatomical segmentations of the hippocampus. Task deactivations were localized to the hippocampal head and body (DMN), relatively sparing the tail (PMN). The functional dichotomization of the hippocampus into anterior DMN-connected and posterior PMN-connected parcels suggests parallel but distinct circuits between the hippocampus and medial parietal cortex for self- versus goal-oriented processing.


Assuntos
Mapeamento Encefálico , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Adulto , Bases de Dados Factuais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória Episódica , Vias Neurais , Análise e Desempenho de Tarefas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA