Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4950, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862496

RESUMO

The advent of civilian spaceflight challenges scientists to precisely describe the effects of spaceflight on human physiology, particularly at the molecular and cellular level. Newer, nanopore-based sequencing technologies can quantitatively map changes in chemical structure and expression at single molecule resolution across entire isoforms. We perform long-read, direct RNA nanopore sequencing, as well as Ultima high-coverage RNA-sequencing, of whole blood sampled longitudinally from four SpaceX Inspiration4 astronauts at seven timepoints, spanning pre-flight, day of return, and post-flight recovery. We report key genetic pathways, including changes in erythrocyte regulation, stress induction, and immune changes affected by spaceflight. We also present the first m6A methylation profiles for a human space mission, suggesting a significant spike in m6A levels immediately post-flight. These data and results represent the first longitudinal long-read RNA profiles and RNA modification maps for each gene for astronauts, improving our understanding of the human transcriptome's dynamic response to spaceflight.


Assuntos
Astronautas , Análise de Sequência de RNA , Voo Espacial , Humanos , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Ausência de Peso , Masculino , Hematopoese/genética , Sequenciamento por Nanoporos/métodos , Adulto , RNA/genética , RNA/sangue , Metilação , Pessoa de Meia-Idade
2.
Nature ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862028

RESUMO

Spaceflight induces molecular, cellular, and physiological shifts in astronauts and poses myriad biomedical challenges to the human body, which are becoming increasingly relevant as more humans venture into space1-6. Yet, current frameworks for aerospace medicine are nascent and lag far behind advancements in precision medicine on Earth, underscoring the need for rapid development of space medicine databases, tools, and protocols. Here, we present the Space Omics and Medical Atlas (SOMA), an integrated data and sample repository for clinical, cellular, and multi-omic research profiles from a diverse range of missions, including the NASA Twins Study7, JAXA CFE study8,9, SpaceX Inspiration4 crew10-12, plus Axiom and Polaris. The SOMA resource represents a >10-fold increase in publicly available human space omics data, with matched samples available from the Cornell Aerospace Medicine Biobank. The Atlas includes extensive molecular and physiological profiles encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiome data sets, which reveal some consistent features across missions, including cytokine shifts, telomere elongation, and gene expression changes, as well as mission-specific molecular responses and links to orthologous, tissue-specific murine data sets. Leveraging the datasets, tools, and resources in SOMA can help accelerate precision aerospace medicine, bringing needed health monitoring, risk mitigation, and countermeasures data for upcoming lunar, Mars, and exploration-class missions.

3.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555493

RESUMO

Long-read sequencing (LRS) has been adopted to meet a wide variety of research needs, ranging from the construction of novel transcriptome annotations to the rapid identification of emerging virus variants. Amongst other advantages, LRS preserves more information about RNA at the transcript level than conventional high-throughput sequencing, including far more accurate and quantitative records of splicing patterns. New studies with LRS datasets are being published at an exponential rate, generating a vast reservoir of information that can be leveraged to address a host of different research questions. However, mining such publicly available data in a tailored fashion is currently not easy, as the available software tools typically require familiarity with the command-line interface, which constitutes a significant obstacle to many researchers. Additionally, different research groups utilize different software packages to perform LRS analysis, which often prevents a direct comparison of published results across different studies. To address these challenges, we have developed the Long-Read Analysis Pipeline for Transcriptomics (L-RAPiT), a user-friendly, free pipeline requiring no dedicated computational resources or bioinformatics expertise. L-RAPiT can be implemented directly through Google Colaboratory, a system based on the open-source Jupyter notebook environment, and allows for the direct analysis of transcriptomic reads from Oxford Nanopore and PacBio LRS machines. This new pipeline enables the rapid, convenient, and standardized analysis of publicly available or newly generated LRS datasets.


Assuntos
Computação em Nuvem , RNA , RNA/genética , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Software , Análise de Sequência de RNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos
4.
BMC Genet ; 21(1): 37, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228447

RESUMO

BACKGROUND: While sodium is attractive at low and aversive at high concentrations in most studied species, including Caenorhabditis elegans, the molecular mechanisms behind transduction remain poorly understood. Additionally, past studies with C. elegans provide evidence that the nematode's innate behavior can be altered by previous experiences. Here we investigated the molecular aspects of both innate and conditioned responses to salts. Transmembrane channel-like 1 (tmc-1) has been suggested to encode a sodium-sensitive channel required for sodium chemosensation in C. elegans, but its specific role remains unclear. RESULTS: We report that TMC-1 is necessary for sodium attraction, but not aversion in the nematode. We show that TMC-1 contributes to the nematode's lithium induced attraction behavior, but not potassium or magnesium attraction thus clarifying the specificity of the response. In addition, we show that sodium conditioned aversion is dependent on TMC-1 and disrupts not only sodium induced attraction, but also lithium. CONCLUSIONS: These findings represent the first time a role for TMC-1 has been described in sodium and lithium attraction in vivo, as well as in sodium conditioned aversion. Together this clarifies TMC-1's importance in sodium hedonics and offer molecular insight into salt chemotaxis learning.


Assuntos
Comportamento Animal/efeitos dos fármacos , Quimiotaxia/genética , Canais Iônicos/genética , Sódio/química , Animais , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/genética , Minerais/química , Potássio/química
5.
Mamm Genome ; 29(5-6): 325-343, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29737391

RESUMO

To fine map a mouse QTL for lean body mass (Burly1), we used information from intercross, backcross, consomic, and congenic mice derived from the C57BL/6ByJ (host) and 129P3/J (donor) strains. The results from these mapping populations were concordant and showed that Burly1 is located between 151.9 and 152.7 Mb (rs33197365 to rs3700604) on mouse chromosome 2. The congenic region harboring Burly1 contains 26 protein-coding genes, 11 noncoding RNA elements (e.g., lncRNA), and 4 pseudogenes, with 1949 predicted functional variants. Of the protein-coding genes, 7 have missense variants, including genes that may contribute to lean body weight, such as Angpt41, Slc52c3, and Rem1. Lean body mass was increased by the B6-derived variant relative to the 129-derived allele. Burly1 influenced lean body weight at all ages but not food intake or locomotor activity. However, congenic mice with the B6 allele produced more heat per kilogram of lean body weight than did controls, pointing to a genotype effect on lean mass metabolism. These results show the value of integrating information from several mapping populations to refine the map location of body composition QTLs and to identify a short list of candidate genes.


Assuntos
Mapeamento Cromossômico , Cromossomos de Mamíferos , Locos de Características Quantitativas , Característica Quantitativa Herdável , Magreza/genética , Fatores Etários , Animais , Mapeamento Cromossômico/métodos , Cruzamentos Genéticos , Metabolismo Energético/genética , Feminino , Estudos de Associação Genética , Variação Genética , Genótipo , Masculino , Camundongos , Magreza/metabolismo
6.
PLoS One ; 12(12): e0188972, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29194435

RESUMO

An average mouse in midlife weighs between 25 and 30 g, with about a gram of tissue in the largest adipose depot (gonadal), and the weight of this depot differs between inbred strains. Specifically, C57BL/6ByJ mice have heavier gonadal depots on average than do 129P3/J mice. To understand the genetic contributions to this trait, we mapped several quantitative trait loci (QTLs) for gonadal depot weight in an F2 intercross population. Our goal here was to fine-map one of these QTLs, Adip20 (formerly Adip5), on mouse chromosome 9. To that end, we analyzed the weight of the gonadal adipose depot from newly created congenic strains. Results from the sequential comparison method indicated at least four rather than one QTL; two of the QTLs were less than 0.5 Mb apart, with opposing directions of allelic effect. Different types of evidence (missense and regulatory genetic variation, human adiposity/body mass index orthologues, and differential gene expression) implicated numerous candidate genes from the four QTL regions. These results highlight the value of mouse congenic strains and the value of this sequential method to dissect challenging genetic architecture.


Assuntos
Adiposidade/genética , Locos de Características Quantitativas , Animais , Feminino , Variação Genética , Masculino , Camundongos
7.
PLoS One ; 10(11): e0141494, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26551037

RESUMO

Genetic variation contributes to individual differences in obesity, but defining the exact relationships between naturally occurring genotypes and their effects on fatness remains elusive. As a step toward positional cloning of previously identified body composition quantitative trait loci (QTLs) from F2 crosses of mice from the C57BL/6ByJ and 129P3/J inbred strains, we sought to recapture them on a homogenous genetic background of consomic (chromosome substitution) strains. Male and female mice from reciprocal consomic strains originating from the C57BL/6ByJ and 129P3/J strains were bred and measured for body weight, length, and adiposity. Chromosomes 2, 7, and 9 were selected for substitution because previous F2 intercross studies revealed body composition QTLs on these chromosomes. We considered a QTL confirmed if one or both sexes of one or both reciprocal consomic strains differed significantly from the host strain in the expected direction after correction for multiple testing. Using these criteria, we confirmed two of two QTLs for body weight (Bwq5-6), three of three QTLs for body length (Bdln3-5), and three of three QTLs for adiposity (Adip20, Adip26 and Adip27). Overall, this study shows that despite the biological complexity of body size and composition, most QTLs for these traits are preserved when transferred to consomic strains; in addition, studying reciprocal consomic strains of both sexes is useful in assessing the robustness of a particular QTL.


Assuntos
Adiposidade/genética , Composição Corporal/genética , Estatura/genética , Tamanho Corporal/genética , Peso Corporal/genética , Locos de Características Quantitativas/genética , Animais , Mapeamento Cromossômico , Cromossomos de Mamíferos , Feminino , Variação Genética/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Fenótipo
8.
Curr Pharm Des ; 20(16): 2669-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23886383

RESUMO

Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical "tastes" as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications.


Assuntos
Papilas Gustativas/fisiologia , Paladar/fisiologia , Animais , Humanos , Receptores Acoplados a Proteínas G/fisiologia
9.
Chem Senses ; 35(7): 565-77, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20605874

RESUMO

Recent studies, both in vitro and in vivo, have suggested the involvement of the polycystic kidney disease-1 and -2 like genes, Pkd1l3 and Pkd2l1, in acid taste transduction. In mice, disruption of taste cells expressing PKD2L1 eliminates gustatory neural responses to acids. However, no previous data exist on taste responses in the absence of PKD1L3 or on behavioral responses in mice lacking either of these proteins. In order to assess the function of PKD1L3, we genetically engineered mice with a targeted mutation of the Pkd1l3 gene. We then examined taste responsiveness of mutant and wild-type mice using several different approaches. In separate groups of mice, we measured preference scores in 48-h 2-bottle tests, determined NaCl or citric acid taste thresholds using a conditioned taste aversion technique, and conducted electrophysiological recordings of activity in the chorda tympani and glossopharyngeal nerves. Multiple taste compounds representing all major taste qualities were used in the preference tests and nerve-recording experiments. We found no significant reduction in taste responsiveness in Pkd1l3 mutant mice in behavioral or electrophysiological tests when compared with wild-type controls. Therefore, further studies are needed to elucidate the function of PKD1L3 in taste bud cells.


Assuntos
Mutação/genética , Canais de Cátion TRPP/genética , Paladar/genética , Animais , Canais de Cálcio , Técnicas de Inativação de Genes , Marcação de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
BMC Genet ; 6: 36, 2005 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-15967025

RESUMO

BACKGROUND: Common inbred mouse strains are genotypically diverse, but it is still poorly understood how this diversity relates to specific differences in behavior. To identify quantitative trait genes that influence taste behavior differences, it is critical to utilize assays that exclusively measure the contribution of orosensory cues. With a few exceptions, previous characterizations of behavioral taste sensitivity in inbred mouse strains have generally measured consumption, which can be confounded by post-ingestive effects. Here, we used a taste-salient brief-access procedure to measure taste sensitivity to eight stimuli characterized as bitter or aversive in C57BL/6J (B6) and DBA/2J (D2) mice. RESULTS: B6 mice were more sensitive than D2 mice to a subset of bitter stimuli, including quinine hydrochloride (QHCl), 6-n-propylthiouracil (PROP), and MgCl2. D2 mice were more sensitive than B6 mice to the bitter stimulus raffinose undecaacetate (RUA). These strains did not differ in sensitivity to cycloheximide (CYX), denatonium benzoate (DB), KCl or HCl. CONCLUSION: B6-D2 taste sensitivity differences indicate that differences in consumption of QHCl, PROP, MgCl2 and RUA are based on immediate orosensory cues, not post-ingestive effects. The absence of a strain difference for CYX suggests that polymorphisms in a T2R-type taste receptor shown to be differentially sensitive to CYX in vitro are unlikely to differentially contribute to the CYX behavioral response in vivo. The results of these studies point to the utility of these common mouse strains and their associated resources for investigation into the genetic mechanisms of taste.


Assuntos
Camundongos Endogâmicos C57BL/fisiologia , Camundongos Endogâmicos DBA/fisiologia , Paladar/genética , Animais , Preferências Alimentares , Cloreto de Magnésio , Camundongos , Camundongos Endogâmicos C57BL/genética , Camundongos Endogâmicos DBA/genética , Propiltiouracila , Quinina , Rafinose , Especificidade da Espécie , Estimulação Química
11.
BMC Genet ; 6: 32, 2005 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-15938754

RESUMO

BACKGROUND: The detection of bitter-tasting compounds by the gustatory system is thought to alert animals to the presence of potentially toxic food. Some, if not all, bitter stimuli activate specific taste receptors, the T2Rs, which are expressed in subsets of taste receptor cells on the tongue and palate. However, there is evidence for both receptor-dependent and -independent transduction mechanisms for a number of bitter stimuli, including quinine hydrochloride (QHCl) and denatonium benzoate (DB). RESULTS: We used brief-access behavioral taste testing of BXD/Ty recombinant inbred (RI) mouse strains to map the major quantitative trait locus (QTL) for taste sensitivity to QHCl. This QTL is restricted to a ~5 Mb interval on chromosome 6 that includes 24 genes encoding T2Rs (Tas2rs). Tas2rs at this locus display in total 307 coding region single nucleotide polymorphisms (SNPs) between the two BXD/Ty RI parental strains, C57BL/6J (quinine-sensitive) and DBA/2J (quinine insensitive); approximately 50% of these mutations are silent. Individual RI lines contain exclusively either C57BL/6J or DBA/2J Tas2r alleles at this locus, and RI lines containing C57BL/6J Tas2r alleles are more sensitive to QHCl than are lines containing DBA/2J alleles. Thus, the entire Tas2r cluster comprises a large haplotype that correlates with quinine taster status. CONCLUSION: These studies, the first using a taste-salient assay to map the major QTL for quinine taste, indicate that a T2R-dependent transduction cascade is responsible for the majority of strain variance in quinine taste sensitivity. Furthermore, the large number of polymorphisms within coding exons of the Tas2r cluster, coupled with evidence that inbred strains exhibit largely similar bitter taste phenotypes, suggest that T2R receptors are quite tolerant to variation.


Assuntos
Cromossomos de Mamíferos , Quinina , Receptores Acoplados a Proteínas G/genética , Paladar/genética , Animais , Camundongos , Camundongos Endogâmicos , Família Multigênica , Mutação , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
12.
Chem Senses ; 28(8): 695-704, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14627538

RESUMO

Mammals use common mechanisms to detect, transduce and process taste stimulus information. For example, they share families of receptors that respond to amino acids, and sweet- and bitter-tasting stimuli. Nonetheless, it also clear that different species exhibit unique taste sensitivities that may reflect specific genetic variations. In humans, sensitivities to the chemically similar, bitter-tasting compounds 6-n-propylthiouracil (PROP) and phenylthiocarbamide (PTC) are heritable and strongly correlated, suggesting a common genetic basis. However, it is unknown whether PROP and PTC taste sensitivities are similarly correlated in mice. Here we report that PROP and PTC taste sensitivities vary independently between two inbred strains of mice. In brief-access taste tests C3HeB/FeJ (C3) and SWR/J (SW) mice possess similar taste sensitivity to PTC, while SW mice are significantly more sensitive to PROP than are C3 mice. In two-bottle preference tests, however, SW mice display greater aversion to both compounds. This discrepancy may be explained by the observation that SW mice consumed taste solutions at a greater rate during the intake test than did C3 mice. Therefore, PTC avoidance is correlated with the amount of PTC consumed in the intake tests rather than the concentration of PTC tested. These findings suggest that post-ingestive factors play a significant role in PTC avoidance during intake tests and highlight an important advantage of brief-access tests over intake tests in resolving the gustatory and post-ingestive contributions to taste-related behaviors. Most strikingly, these results demonstrate that in mice, unlike in humans, PTC and PROP taste sensitivities vary independently, thereby suggesting a subtle functional diversity of bitter-taste mechanisms across mammalian species.


Assuntos
Feniltioureia/farmacologia , Propiltiouracila/farmacologia , Limiar Gustativo/fisiologia , Paladar/fisiologia , Ração Animal , Animais , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Preferências Alimentares/efeitos dos fármacos , Masculino , Camundongos , Polimorfismo Genético/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA