Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 575(7781): 147-150, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31695211

RESUMO

Elastic electron-proton scattering (e-p) and the spectroscopy of hydrogen atoms are the two methods traditionally used to determine the proton charge radius, rp. In 2010, a new method using muonic hydrogen atoms1 found a substantial discrepancy compared with previous results2, which became known as the 'proton radius puzzle'. Despite experimental and theoretical efforts, the puzzle remains unresolved. In fact, there is a discrepancy between the two most recent spectroscopic measurements conducted on ordinary hydrogen3,4. Here we report on the proton charge radius experiment at Jefferson Laboratory (PRad), a high-precision e-p experiment that was established after the discrepancy was identified. We used a magnetic-spectrometer-free method along with a windowless hydrogen gas target, which overcame several limitations of previous e-p experiments and enabled measurements at very small forward-scattering angles. Our result, rp = 0.831 ± 0.007stat ± 0.012syst femtometres, is smaller than the most recent high-precision e-p measurement5 and 2.7 standard deviations smaller than the average of all e-p experimental results6. The smaller rp we have now measured supports the value found by two previous muonic hydrogen experiments1,7. In addition, our finding agrees with the revised value (announced in 2019) for the Rydberg constant8-one of the most accurately evaluated fundamental constants in physics.

2.
Phys Rev Lett ; 114(19): 192503, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26024167

RESUMO

New results are reported from a measurement of π^{0} electroproduction near threshold using the p(e,e^{'}p)π^{0} reaction. The experiment was designed to determine precisely the energy dependence of s- and p-wave electromagnetic multipoles as a stringent test of the predictions of chiral perturbation theory (ChPT). The data were taken with an electron beam energy of 1192 MeV using a two-spectrometer setup in Hall A at Jefferson Lab. For the first time, complete coverage of the ϕ_{π}^{*} and θ_{π}^{*} angles in the pπ^{0} center of mass was obtained for invariant energies above threshold from 0.5 up to 15 MeV. The 4-momentum transfer Q^{2} coverage ranges from 0.05 to 0.155 (GeV/c)^{2} in fine steps. A simple phenomenological analysis of our data shows strong disagreement with p-wave predictions from ChPT for Q^{2}>0.07 (GeV/c)^{2}, while the s-wave predictions are in reasonable agreement.

3.
Phys Rev Lett ; 107(19): 191804, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22181599

RESUMO

We present a search at the Jefferson Laboratory for new forces mediated by sub-GeV vector bosons with weak coupling α' to electrons. Such a particle A' can be produced in electron-nucleus fixed-target scattering and then decay to an e + e- pair, producing a narrow resonance in the QED trident spectrum. Using APEX test run data, we searched in the mass range 175-250 MeV, found no evidence for an A'→ e+ e- reaction, and set an upper limit of α'/α ~/= 10(-6). Our findings demonstrate that fixed-target searches can explore a new, wide, and important range of masses and couplings for sub-GeV forces.

4.
Phys Rev Lett ; 98(18): 182303, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17501567

RESUMO

A new accurate measurement of the tensor analyzing powers T20, T21, and T22 in deuteron photodisintegration has been performed. Wide-aperture nonmagnetic detectors allowed broad kinematic coverage in a single set up: E(gamma)=25 to 600 MeV, and theta(p)(cm)=24 degrees to 48 degrees and 70 degrees to 102 degrees . The new data provide a significant improvement over the few existing measurements. The angular dependency of the tensor asymmetries in deuteron photodisintegration is extracted for the first time.

5.
Phys Rev Lett ; 90(7): 072501, 2003 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-12633224

RESUMO

The tensor analyzing power components T20 and T21 have been measured in elastic electron-deuteron scattering at the 2 GeV electron storage ring VEPP-3, Novosibirsk, in a four-momentum transfer range from 8.4 to 21.6 fm(-2). A new polarized internal gas target with an intense cryogenic atomic beam source was used. The new data determine the deuteron form factors G(C) and G(Q) in an important range of momentum transfer where the first node of the deuteron monopole charge form factor is located. The new results are compared with previous data and with some theoretical predictions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA