Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 12(9)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37764897

RESUMO

During the last few decades, bat lyssaviruses have become the topic of intensive molecular and epidemiological investigations. Since ancient times, rhabdoviruses have caused fatal encephalitis in humans which has led to research into effective strategies for their eradication. Modelling of potential future cross-species virus transmissions forms a substantial component of the recent infection biology of rabies. In this article, we summarise the available data on the phylogeography of both bats and lyssaviruses in Europe and the adjacent reg ions, especially in the contact zone between the Palearctic and Ethiopian realms. Within these zones, three bat families are present with high potential for cross-species transmission and the spread of lyssaviruses in Phylogroup II to Europe (part of the western Palearctic). The lack of effective therapies for rabies viruses in Phylogroup II and the most divergent lyssaviruses generates impetus for additional phylogenetic and virological research within this geographical region.

2.
Bull Entomol Res ; 113(5): 693-702, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37545319

RESUMO

The honey bee is associated with a diverse community of microbes (viruses, bacteria, fungi, and protists), commonly known as the microbiome. Here, we present data on honey bee microbiota from two localities having different surrounding landscapes - mountain (the Rhodope Mountains) and lowland (the Danube plain). The bacterial communities of abdomen of adult bees were studied using amplicon sequencing of the 16S rRNA gene. The composition and dominance structure and their variability within and between localities, alpha and beta diversity, and core and differential taxa were compared at different hierarchical levels (operational taxonomic units to phylum). Seven genera (Lactobacillus, Gilliamella, Bifidobacterium, Commensalibacter, Bartonella, Snodgrassella, and Frischella), known to include core gut-associated phylotypes or species clusters, dominated (92-100%) the bacterial assemblages. Significant variations were found in taxa distribution across both geographical regions and within each apiary. Lactobacillus (Firmicutes) prevailed significantly in the mountain locality followed by Gilliamella and Bartonella (Proteobacteria). Bacteria of four genera, core (Bartonella and Lactobacillus) and non-core (Pseudomonas and Morganella), dominated the bee-associated assemblages of the Danube plain locality. Several ubiquitous bacterial genera (e.g., Klebsiella, Serratia, and Providencia), some species known also as potential and opportunistic bee pathogens, had been found in the lowland locality. Beta diversity analyses confirmed the observed differences in the bacterial communities from both localities. The occurrence of non-core taxa contributes substantially to higher microbial richness and diversity in bees from the Danube plain locality. We assume that the observed differences in the microbiota of honey bees from both apiaries are due to a combination of factors specific for each region. The surrounding landscape features of both localities and related vegetation, anthropogenic impact and land use intensity, the beekeeping management practices, and bee health status might all contribute to observed differences in bee microbiota traits.


Assuntos
Microbiota , Animais , Abelhas/genética , RNA Ribossômico 16S/genética , Microbiota/genética , Bactérias/genética
3.
Vet Sci ; 9(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35878350

RESUMO

The Danubian horse, together with the Pleven and the Eastern Bulgarian horse breeds, is one of the modern breeds in Bulgaria. The objective of this study was to compare the genetic structure and genetic diversity of six paternal genealogical lineages of the Danubian horse breed (Zdravko, NONIUS XVII-30, Torpedo, Lider, Kalifa, and Hrabar). In total, 166 individuals from the six genealogical lines were investigated, based on 15 STR markers (short tandem repeats, also known as microsatellites). In total, 184 alleles were found in the six populations, using 15 microsatellite loci. The mean number of alleles, the effective number of alleles, and the polymorphic information content (PIC) values per locus were 12.28, 9.48, and 0.73, respectively. In a comparison of the allelic diversity among sire lineages, the highest genetic diversity (Na) was observed in Lider and Kalifa (14.60 ± 0.21), while the lowest value of this parameter was observed in the Zdravko lineage 4.20 ± 0.35. The largest genetic diversity was found in loci HMS3 and HMS7, with 13 alleles, and the smallest polymorphism was noted for the locus ASB17, with 10 alleles. The level of observed heterozygosity was in the range of 0.65 ± 0.069 for the Zdravko lineage to 0.93 ± 0.01 for the Torpedo lineage. The expected heterozygosity level range was from 0.57 ± 0.048 to 0.91 ± 0.01 for all horse lineages. Structure analysis revealed three main gene pools in the study population. The first pool included the Zdravko lineage; the second had the NONIUS XVII-30, Torpedo, Lider, and Kalifa lineages; and the third defined the Hrabar lineage, which was significantly differentiated from the other genealogical lineages.

4.
J Equine Vet Sci ; 109: 103830, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34871751

RESUMO

The question about the time and the place of horse domestication, a process which had a profound impact on the progress of mankind, is disputable. According to the most widely accepted hypothesis, the earliest domestication of the horse happened in the western parts of the Eurasian steppes, between the Northern Black Sea region and present-day Kazakhstan and Turkmenistan. It seems that it occurred not earlier than the first half and most probably during the middle (even the last third) of the fourth millennium BC (from ∼ 5.5 kya). The next steps of large-scale horse breeding occurred almost simultaneously in Eurasia and North Africa due to the development of the social structure of human communities. On the other hand, the morphological differences between wild and domestic animals are rather vague and the genetic introgression between them is speculative. In this review, we have tried to gather all available scientific data on the existing possible hypotheses for the earliest domestication of the horse, as well as to highlight some data on the most plausible ones. This is due to the frequency of some significant data on the frequency of strictly defined mitotypes in different historical periods of human civilizations existing in the same periods.


Assuntos
DNA Mitocondrial , Domesticação , Animais , Animais Domésticos/genética , Cruzamento , DNA Mitocondrial/genética , Cavalos/genética , Análise de Sequência/veterinária
5.
Acta Vet Hung ; 69(3): 239-248, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34343110

RESUMO

The objective of our study was to investigate the genetic structure of yet uninvestigated populations of three closely related horse breeds - the Danubian Horse, the Hungarian Nonius and the Serbian Nonius - in order to clarify their origin and genetic diversity. A 640-bp-long fragment of the mtDNA D-loop region was amplified and sequenced. The results showed that the investigated breeds have different genetic profiles although they share some common characteristics. We identified nine of the 17 haplogroups described in modern horses. Most of the obtained sequences fall into the M, L, G, and O'P lineages, which is indicative of the genetic profile of the ancestral mares that had probably been used at the initial stages of the formation of the breeds. The population of the Danubian Horse is characterised by a high prevalence of the Anatolian specific haplogroup G (45%), followed by the Western Eurasian specific haplogroups L and M (both about 21%). In the Hungarian Nonius breed we found the highest frequency of the Western Eurasian haplogroup M (44%), followed by the Middle Eastern O'P (26%) and the Central Asian specific E (13%) and G (13%). The Serbian Nonius showed a distinct genetic profile, characterised by a high prevalence of the rare European haplogroup D (67%), followed by the Central Asian specific haplogroup G (17%). The high percentage of haplogroups shared especially between the Danubian and the Hungarian Nonius indicates the possibility of a common origin of the two breeds. In contrast, the Serbian Nonius showed a specific genetic profile, which can be explained by a different and independent origin.


Assuntos
DNA Mitocondrial , Variação Genética , Animais , DNA Mitocondrial/genética , Feminino , Haplótipos , Cavalos/genética , Hungria , Análise de Sequência/veterinária
6.
Vet World ; 14(1): 56-60, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33642786

RESUMO

BACKGROUND AND AIM: Jacob sheep are a rare ancient breed of sheep believed to have originated from the Mediterranean area but which are now kept throughout the world. These sheep have recently attracted medical interest due to the observation of a genetic disorder in the breed that can be used as an animal model of Tay-Sachs disease (TSD). This study aims to detect mutations in the Hexosaminidase A gene in Jacob sheep based on sequence analysis of the 284-bp fragment situated between exon 11 and intron 11 of the gene, a target sequence for site-specific mutation. This is the first study that has investigated Jacob sheep in Bulgaria for gene-specific mutations. MATERIALS AND METHODS: A total of 20 blood samples were collected from Jacob sheep from the Rhodope Mountains. DNA was isolated from these samples, and a specific 284-bp fragment was amplified. The amplified products were purified using a polymerase chain reaction purification kit and sequenced in both directions. RESULTS: Target sequences were successfully amplified from all 20 investigated sheep. Sequence analysis did not show the homozygous, recessive, missense (G-to-C transition) mutation at nucleotide position 1330 (G1330→C) in exon 11, demonstrating that all of these sheep were a normal genotype (wild-type). CONCLUSION: Jacob sheep are considered a potentially useful animal model in advancing the understanding of pathogenesis and developing potential therapies for orphan diseases, such as those characterized by mutant GM2 gangliosides. The clinical and biochemical features of the Jacob sheep model of TSD represent well the human classical late-infantile form of this disorder, indicating that the model can serve as a possible new research tool for further study of the pathogenesis and treatment of TSD.

7.
Ecol Evol ; 11(6): 2842-2848, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767840

RESUMO

The origin and evolutionary history of the European bison Bison bonasus (wisent) have become clearer after several morphological, genomic, and paleogenomic studies in the last few years, but these paleogenomic studies have raised new questions about the evolution of the species. Here, we present additional information about the population diversity of the species based on the analysis of new subfossil Holocene remains from the Balkan Peninsula. Seven ancient samples excavated from caves in Western Stara Planina in Bulgaria were investigated by mitochondrial D-loop (HVR1) sequence analysis. The samples were dated to 3,800 years BP by radiocarbon analysis. Additionally, a phylogenetic analysis was performed to investigate the genetic relationship among the investigated samples and all mitochondrial DNA sequences from the genus Bison available in GenBank. The results clustered with the sequences from the extinct Holocene South-Eastern (Balkan) wisent to the fossil Alpine population from France, Austria, and Switzerland, but not with those from the recent Central European (North Sea) one and the now extinct Caucasian population. In conclusion, these data indicate that the Balkan wisent that existed in historical time represented a relict and probably an isolated population of the Late Pleistocene-Holocene South-Western mountainous population of the wisent.

8.
Vet Sci ; 9(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35051094

RESUMO

Environmental DNA (eDNA) analysis is related to screening genetic material of various organisms in environmental samples. Honey represents a natural source of exogenous DNA, which allows for the detection of different honey bee pathogens and parasites. In the present study, we extracted DNA from 20 honey samples from different regions in Bulgaria and tested for the presence of DNA of the ectoparasitic mite Varroa destructor, as well as Nosema apis and Nosema ceranae. Only Nosema ceranae was detected, showing up in 30% of all samples, which confirms the widespread prevalence of this pathogen. All positive samples were found in plain regions of the country, while this pathogen was not detected in mountainous parts. None of the samples gave positive amplifications for the Nosema apis and Varroa mite. The obtained results from this study confirm previous observations that eDNA contained in honey is a potent source for effective biomonitoring of actual diseases in the honey bee.

9.
Vet Sci ; 7(4)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143134

RESUMO

The Western honey bee (Apis mellifera L., Hymenoptera: Apidae) is a species of crucial economic, agricultural and environmental importance. In the last ten years, some regions of the world have suffered from a significant reduction of honey bee colonies. In fact, honey bee losses are not an unusual phenomenon, but in many countries worldwide there has been a notable decrease in honey bee colonies. The cases in the USA, in many European countries, and in the Middle East have received considerable attention, mostly due to the absence of an easily identifiable cause. It has been difficult to determine the main factors leading to colony losses because of honey bees' diverse social behavior. Moreover, in their daily routine, they make contact with many agents of the environment and are exposed to a plethora of human activities and their consequences. Nevertheless, various factors have been considered to be contributing to honey bee losses, and recent investigations have established some of the most important ones, in particular, pests and diseases, bee management, including bee keeping practices and breeding, the change in climatic conditions, agricultural practices, and the use of pesticides. The global picture highlights the ectoparasitic mite Varroa destructor as a major factor in colony loss. Last but not least, microsporidian parasites, mainly Nosema ceranae, also contribute to the problem. Thus, it is obvious that there are many factors affecting honey bee colony losses globally. Increased monitoring and scientific research should throw new light on the factors involved in recent honey bee colony losses. The present review focuses on the main factors which have been found to have an impact on the increase in honey bee colony losses.

10.
J Equine Vet Sci ; 88: 102933, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32303312

RESUMO

It is well known that horse breeding in Bulgaria is a cultural heritage in Bulgaria, dating from prehistoric and historic times. Until now, molecular data on Bulgarian horses from the plain regions of the country were not available. Therefore, for the first time, we have collected genetic information about some modern horse breeds from the plain regions in Bulgaria. A total of 50 horses originating from different families from two different breeds were investigated: the first one was the Pleven horse (n = 11, breeding in the Danubian Plain), and the second one was the East Bulgarian horse breed (n = 39, Shumen district). These breeds were genotyped according to the mitochondrial D-loop region. The results showed that the Pleven horse particularly carries the European haplogroup L (45.45%), followed by the Middle East haplogroup C (27.27%). In contrast to the Pleven horse, the East Bulgarian horse breed revealed almost equal frequencies of the European specific haplogroup L (33.33%) and the Central Asiatic haplogroup Q (35.90%). Analyses of these two horse breeds revealed a specific genetic profile, but it is obvious that the East Bulgarian horse showed an unusual, mixed profile-a massive admixture with the Asiatic-type haplogroup Q and a high haplogroup diversity. In conclusion, the differences in genetic structure of the two plain horse breeds may be explained with the various horse breeds involved in their formation.


Assuntos
Variação Genética , Mitocôndrias , Animais , Bulgária , Haplótipos , Cavalos/genética , Oriente Médio
11.
Genes (Basel) ; 10(10)2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561553

RESUMO

The history of dog domestication is still under debate, but it is doubtless the process of an ancient partnership between dogs (Canis familiaris) and humans. Although data on ancient DNA for dog diversity are still incomplete, it is clear that several regional dog populations had formed in Eurasia up to the Holocene. During the Neolithic Revolution and the transition from hunter-gatherer to farmer societies, followed by civilization changes in the Antiquity period, the dog population structure also changed. This process was due to replacement with newly formed dog populations. In this study, we present for the first time mitochondrial data of ancient dog remains from the Early Neolithic (8000 years before present (BP)) to Late Antiquity (up to 3th century AD) from southeastern Europe (the Balkans). A total of 16 samples were analyzed, using the mitochondrial D-loop region (HVR1). The results show the presence of A (70%) and B (25%) clades throughout the Early and Late Neolithic Period. In order to clarify the position of our results within the ancient dog population in Eneolithic Eurasia, we performed phylogenetic analysis with the available genetic data sets. This data showed a similarity of the ancient Bulgarian dogs to Italian (A, B, and C clades) and Iberian (clades A and C) dogs' populations. A clear border can be seen between southern European genetic dog structure, on the one hand, and on the other hand, central-western (clade C), eastern (clade D) and northern Europe (clades A and C). This corresponds to genetic data for European humans during the same period, without admixture between dog populations. Also, our data have shown the presence of clade B in ancient Eurasia. This is not unexpected, as the B haplogroup is widely distributed in extant Balkan dogs and wolves. The presence of this clade both in dogs and in wolves on the Balkans may be explained with hybridization events before the Neolithic period. The spreading of this clade across Europe, together with the A clade, is related to the possible dissemination of newly formed dog breeds from Ancient Greece, Thrace, and the Roman Empire.


Assuntos
DNA Antigo , Cães/genética , Fósseis , Filogenia , Distribuição Animal , Animais , DNA Mitocondrial/genética , Evolução Molecular , Haplótipos
12.
Parasitol Res ; 118(1): 73-88, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30338373

RESUMO

The aims of the study are to enrich the partial 28S rDNA dataset for hymenolepidids by adding new sequences for species parasitic in the genera Sorex, Neomys and Crocidura (Soricidae) and to propose a new hypothesis for the relationships among mammalian hymenolepidids. New sequences were obtained for Coronacanthus integrus, C. magnihamatus, C. omissus, C. vassilevi, Ditestolepis diaphana, Lineolepis scutigera, Spasskylepis ovaluteri, Staphylocystis tiara, S. furcata, S. uncinata, Vaucherilepis trichophorus and Neoskrjabinolepis sp. The phylogenetic analysis (based on 56 taxa) confirmed the major clades identified by Haukisalmi et al. (Zool Scr 39:631-641, 2010) based on analysis of 31 species: Ditestolepis clade, Hymenolepis clade, Rodentolepis clade and Arostrilepis clade; however, the support was weak for the early divergent lineages of the tree and for the Arostrilepis clade. Novelties revealed include the molecular evidence for the monophyly of Coronacanthus, the non-monophyletic status of Staphylocystis and the polyphyly of Staphylocystoides. The analysis has confirmed the monophyly of Hymenolepis, the monophyly of hymenolepidids from glirids, the position of Pararodentolepis and Nomadolepis as sister taxa, the polyphyly of Rodentolepis, the position of Neoskrjabinolepis and Lineolepis as sister taxa, and the close relationship among the genera with the entire reduction of rostellar apparatus. Resolved monophyletic groups are supported by the structure of the rostellar apparatus. The diversification of the Ditestolepis clade is associated with soricids. The composition of the other major clades suggests multiple evolutionary events of host switching, including between different host orders. The life cycles of Coronacanthus and Vaucherilepis are recognised as secondarily aquatic as these taxa are nested in terrestrial groups.


Assuntos
Cestoides/classificação , Infecções por Cestoides/veterinária , Filogenia , Musaranhos/parasitologia , Animais , Cestoides/genética , Cestoides/isolamento & purificação , Infecções por Cestoides/parasitologia , DNA Ribossômico/química , DNA Ribossômico/genética , RNA de Helmintos/química , RNA de Helmintos/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA/veterinária
13.
PeerJ ; 6: e5077, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29942706

RESUMO

Honey bee colonies suffer from various pathogens, including honey bee viruses. About 24 viruses have been reported so far. However, six of them are considered to cause severe infection which inflicts heavy losses on beekeeping. The aim of this study was to investigate incidence of six honey bee viruses: deformed wing virus (DWV), acute bee paralysis virus (ABPV), chronic bee paralysis virus (CBPV), sacbrood virus (SBV), kashmir bee virus (KBV), and black queen cell virus (BQCV) by a reverse transcription polymerase chain reaction (RT-PCR). A total of 250 adult honey bee samples were obtained from 50 colonies from eight apiaries situated in three different parts of the country (South, North and West Bulgaria). The results showed the highest prevalence of DWV followed by SBV and ABPV, and one case of BQCV. A comparison with homology sequences available in GenBank was performed by phylogenetic analysis, and phylogenetic relationships were discussed in the context of newly described genotypes in the uninvestigated South Eastern region of Europe. In conclusion, the present study has been the first to provide sequencing data and phylogenetics analyses of some honey bee viruses in Bulgaria.

14.
PeerJ ; 6: e4252, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29404205

RESUMO

Nosema apis and Nosema ceranae are the two main microsporidian parasites causing nosematosis in the honey bee Apis mellifera. The aim of the present study is to investigate the presence of Nosema apis and Nosema ceranae in the area of Bulgaria. The 16S (SSU) rDNA gene region was chosen for analysis. A duplex PCR assay was performed on 108 honey bee samples from three different parts of the country (South, North and West Bulgaria). The results showed that the samples from the northern part of the country were with the highest prevalence (77.2%) for Nosema ceranae while those from the mountainous parts (the Rodopa Mountains, South Bulgaria) were with the lowest rate (13.9%). Infection with Nosema apis alone and co-infection N. apis/N. ceranae were not detected in any samples. These findings suggest that Nosema ceranae is the dominant species in the Bulgarian honey bee. It is not known when the introduction of Nosema ceranae in Bulgaria has occurred, but as in the rest of the world, this species has become the dominant one in Bulgarian Apis mellifera. In conclusion, this is the first report for molecular detection of Nosema infection of honey bee in Bulgaria. The results showed that N. ceranae is the main Nosema species in Bulgaria.

15.
Syst Parasitol ; 91(1): 1-12, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25862029

RESUMO

The genus Aphalloides Dollfus, Chabaud & Golvan, 1957 consists of two species parasitic in the body cavity of sand gobies. Its systematic position in the superfamily Opisthorchioidea Looss, 1899 is unresolved and it has been placed by various authors in three families, i.e. Cryptogonimidae Ward, 1917, Heterophyidae Leiper, 1909 and Opisthorchiidae Looss, 1899. Its type-species, Aphalloides coelomicola Dollfus, Chabaud & Golvan, 1957, is here reported from the Caucasian dwarf goby Knipowitschia caucasica (Berg) in the lagoon Atanasovsko Lake, Black Sea coast of Bulgaria (new geographical record). The species is redescribed based on light and scanning electron microscopy demonstrating some characters typical for the Cryptogonimidae but also characters distinguishing it from the other genera of the family such as the lack of tegumental spines and the presence of a short excretory vesicle, which does not extend into the forebody. Phylogenetic analysis of the D2-D3 expansion segments of the 28S rRNA gene suggests phylogenetic relationships of Aphalloides coelomicola with the cryptogonimid Centrovarium lobotes (MacCallum, 1895). These data support the affiliation of the genus Aphalloides to the family Cryptogonimidae. The peculiar morphology of the species in the genus is explained by their unusual life-cycles characterised by progenetic development; sand gobies being simultaneously second intermediate and definitive hosts.


Assuntos
Filogenia , Trematódeos , Animais , Mar Negro , Bulgária , Estágios do Ciclo de Vida , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Perciformes/parasitologia , RNA Ribossômico 28S/genética , Especificidade da Espécie , Trematódeos/classificação , Trematódeos/genética , Trematódeos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA