Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Nutrients ; 14(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35683979

RESUMO

This study investigates whether ladder climbing (LC), as a model of resistance exercise, can reverse whole-body and skeletal muscle deleterious metabolic and inflammatory effects of high-fat (HF) diet-induced obesity in mice. To accomplish this, Swiss mice were fed for 17 weeks either standard chow (SC) or an HF diet and then randomly assigned to remain sedentary or to undergo 8 weeks of LC training with progressive increases in resistance weight. Prior to beginning the exercise intervention, HF-fed animals displayed a 47% increase in body weight (BW) and impaired ability to clear blood glucose during an insulin tolerance test (ITT) when compared to SC animals. However, 8 weeks of LC significantly reduced BW, adipocyte size, as well as glycemia under fasting and during the ITT in HF-fed rats. LC also increased the phosphorylation of AktSer473 and AMPKThr172 and reduced tumor necrosis factor-alpha (TNF-α) and interleukin 1 beta (IL1-ß) contents in the quadriceps muscles of HF-fed mice. Additionally, LC reduced the gene expression of inflammatory markers and attenuated HF-diet-induced NADPH oxidase subunit gp91phox in skeletal muscles. LC training was effective in reducing adiposity and the content of inflammatory mediators in skeletal muscle and improved whole-body glycemic control in mice fed an HF diet.


Assuntos
Resistência à Insulina , Treinamento Resistido , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Humanos , Resistência à Insulina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Obesidade/terapia , Ratos
2.
An Acad Bras Cienc ; 93(2): e20191450, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34076038

RESUMO

Muscle overuse and its consequent muscle damage has no cure. Therefore, the present study aimed to investigate the regulatory role of tau-AuNPs on muscle recovery of muscle overuse model. The animals (Male Swiss mice) were randomly divided into four groups: Control (Ctr; n=6); tau-AuNPs (n=6); overuse (n=6); and overuse plus tau-AuNPs (n=6). Exercise sessions were performed for 21 consecutive days, and one exercise model was applied daily in the following sequence: low intensity, moderate intensity, and high intensity. The mice were then sacrificed. The quadriceps muscles were surgically removed for subsequent biochemical analysis (oxidative stress parameters, DNA damage markers and muscle differentiation protein). The overuse group significantly increased the oxidative stress parameters and DNA damage markers, whereas tau-AuNPs significantly decreased the oxidative stress parameters in the overuse animal model. However, there were no significant differences observed between overuse group and overuse plus tau-AuNPs administrated group in relation to DNA damage markers including DNA damage frequency and index levels when compared to control and tau-AuNPs groups. Muscle differentiation protein Myf-5 was increased in the overuse plus tau-AuNPs administration group when compared to control group. In conclusion, tau-AuNPs had significant effect on reducing oxidative stress parameters and increasing myogenic regulatory protein Myf-5 in the overuse group. However, it did not have significant effect on reducing DNA damage.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Dano ao DNA , Masculino , Camundongos , Estresse Oxidativo , Taurina
3.
ACS Biomater Sci Eng ; 7(3): 1242-1251, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33586954

RESUMO

Multiple sclerosis (MS) is a demyelinating chronic autoimmune inflammatory disease of the central nervous system (CNS). A large amount of proinflammatory cytokines is released in the CNS from the self-reactive T cells infiltrate, leading to the destruction of the myelin sheath and contributing to the development of MS. Several drugs have emerged in recent years to treat MS, and studies have shown that gold nanoparticles (GNPs) have anti-inflammatory properties in autoimmune diseases. Thus, the effects of GNP conjugation to ethylene dicysteine diethyl ester (ECD) were evaluated in C57BL/6 female mice exposed to experimental MS. Animals were exposed to experimental autoimmune encephalitis (EAE) induced by myelin oligodendrocyte glycoprotein (MOG35-55) in complete Freund's adjuvant supplemented with Mycobacterium tuberculosis. The clinical and cerebral effects of the different doses of ECD-GNPs (0.3, 0.6, and 1.0 mg/kg) were first studied, and the results showed that the group treated with 0.6 mg/kg ECD-GNPs improved clinical symptoms, inflammatory infiltrate, and myelin integrity. In the following step, GNPs and ECD-GNPs (0.6 mg/kg) showed improvements in the clinical signs of the disease. Moreover, there was a reduction in the levels of proinflammatory cytokines in both groups compared to EAE, and only the isolated use of GNPs increased IL-4 expression. Both NF-κB and TGFß immunoexpression were significantly reduced following EAE + GNPs and EAE + ECD-GNPs treatment. In conclusion, GNPs and ECD-GNPs at 0.6 mg/kg attenuate the neurological signs of EAE likely due to inhibition of neuroinflammation induced by EAE.


Assuntos
Encefalomielite Autoimune Experimental , Nanopartículas Metálicas , Animais , Cisteína/análogos & derivados , Encefalomielite Autoimune Experimental/induzido quimicamente , Ésteres , Feminino , Ouro , Nanopartículas Metálicas/toxicidade , Camundongos , Camundongos Endogâmicos C57BL
4.
Front Physiol ; 11: 590962, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281621

RESUMO

Consumption of non-traditional cigarettes has increased considerably worldwide, and they can induce skeletal muscle dysfunction. Physical exercise has been demonstrated to be important for prevention and treatment of smoking-related diseases. Therfore, the aim of this study was to investigate the effects of combined physical exercise (aerobic plus resistance exercise) on muscle histoarchitecture and oxidative stress in the animals exposed chronically to smoke from hand-rolled cornhusk cigarette (HRCC). Male Swiss mice were exposed to ambient air or passively to the smoke of 12 cigarettes over three daily sessions (four cigarettes per session) for 30 consecutive days with or without combined physical training. 48 h after the last training session, total leukocyte count was measured in bronchoalveolar lavage fluid (BALF), and the quadriceps were removed for histological/immunohistochemical analysis and measurement of oxidative stress parameters. The effects of HRCC on the number of leukocytes in BALF, muscle fiber diameter, central nuclei, and nuclear factor kappa B (NF-κB) were reverted after combined physical training. In addition, increased myogenic factor 5, tumor necrosis factor alpha (TNFα), reduced transforming growth factor beta (TGF-ß), and nitrate levels were observed after physical training. However, the reduction in superoxide dismutase and glutathione/glutathione oxidized ratio induced by HRCC was not affected by the training program. These results suggest the important changes in the skeletal muscle brought about by HRCC-induced alteration in the muscle redox profile. In addition, combined physical exercise contributes to remodeling without disrupting muscle morphology.

5.
An Acad Bras Cienc ; 92(2): e20191141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32813863

RESUMO

The aim of this study was to investigate the effects of yerba mate (Ilex paraguariensis St. Hil.) extract (YME) on oxidative stress parameters and pathological changes in the lungs of mice chronically exposed to hand-rolled cornhusk cigarette (HRC) smoke. Twenty-four male Swiss mice were divided into four groups exposed to the following treatments: control (ambient air), HRC, YME, and HRC plus YME. The animals were exposed to four HRCs per session, with 3 sessions/day, every day for 30 days. Twenty-four hours after the last inhalation, the mice were killed, and the left lungs were removed. The results showed that HRC contains elevated levels of tin and carbon oxide, but less arsenic, cobalt, manganese, and selenium than commercial cigarettes. YME administration reversed fibrosis, alveolar enlargement, and hemorrhage induced by HRC smoke. In addition, the YME and HRC significantly reduced the production of oxidants, oxidative damage and promoted a significant increase in total thiol. In conclusion, exposure to HRC smoke compromised pulmonary histoarchitecture by promoting structural changes and increasing oxidative stress in tissues. However, concomitant treatment with YME regulated the redox state and reduced the harmful effects of HRC smoke exposure in the lungs.


Assuntos
Ilex paraguariensis , Animais , Masculino , Camundongos , Oxirredução , Estresse Oxidativo , Extratos Vegetais , Fumaça , Fumar
6.
Clinics (Sao Paulo) ; 74: e833, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31271587

RESUMO

OBJECTIVES: Progressive decline of physiological processes with aging is normal. Aging is also associated with decreased functional capacity and onset of many diseases. This study evaluated the changes in physical fitness (PF), body composition (BC), and lipid profile (LP) in elderly men completing different training protocols. METHODS: Fifty-five men (age 60-80 years) were randomized into the following groups: without training, aerobic training on dry land, combined training on dry land, and combined training in water. Training was conducted for 8 weeks, and PF, LP, and BC were assessed at the beginning and end of the intervention. RESULTS: Significant improvements were observed in all parameters; however, combined programs on land or in water were more effective at improving strength and aerobic fitness. Combined exercise produced greater effects on BC and LP and some muscle fitness parameters; however, improvements in muscular and aerobic capacities occurred independently of exercise type or model. CONCLUSION: These results indicate that the effects of training occur regardless of training type or model, and are directly associated with training periodization, adherence, and regularity.


Assuntos
Exercício Físico/fisiologia , Força Muscular/fisiologia , Condicionamento Físico Humano/métodos , Condicionamento Físico Humano/fisiologia , Aptidão Física/fisiologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Antropometria , Composição Corporal/fisiologia , Colesterol/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Amplitude de Movimento Articular/fisiologia , Valores de Referência , Fatores de Tempo , Triglicerídeos/sangue
7.
Arq Bras Cardiol ; 112(5): 545-552, 2019 05.
Artigo em Inglês, Português | MEDLINE | ID: mdl-31038529

RESUMO

BACKGROUND: Obesity can be characterized by low-grade chronic inflammation and is associated with an excesso production of reactive oxygen species, factors that contribute to coronary heart disease and other cardiomyopathies. OBJECTIVE: To verify the effects of resistance exercise training on oxidative stress and inflammatory parameters on mice with obesity induced by a high-fat diet (HFD). METHODS: 24 Swiss mice were divided into 4 groups: standard diet (SD), SD + resistance exercise (SD + RE), diet-induced obesity (DIO), DIO + RE. The animals were fed SD or HFD for 26 weeks and performed resistance exercises in the last 8 weeks of the study. The insulin tolerance test (ITT) and body weight monitoring were performed to assess the clinical parameters. Oxidative stress and inflammation parameters were evaluated in the cardiac tissue. Data were expressed by mean and standard deviation (p < 0.05). RESULTS: The DIO group had a significant increase in reactive oxygen species levels and lipid peroxidation with reduction after exercise. Superoxide dismutase and the glutathione system showed no significant changes in DIO animals, with an increase in SD + RE. Only catalase activity decreased with both diet and exercise influence. There was an increase in tumor necrosis factor-alpha (TNF-α) in the DIO group, characterizing a possible inflammatory condition, with a decrease when exposed to resistance training (DIO+RE). CONCLUSION: The DIO resulted in a redox imbalance in cardiac tissue, but the RE was able to modulate these parameters, as well as to control the increase in TNF-α levels.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Peroxidação de Lipídeos/fisiologia , Miocárdio/química , Estresse Oxidativo/fisiologia , Treinamento Resistido , Fator de Necrose Tumoral alfa/análise , Animais , Inflamação/fisiopatologia , Resistência à Insulina , Masculino , Camundongos , Condicionamento Físico Animal , Fatores de Tempo
8.
Arq. bras. cardiol ; 112(5): 545-552, May 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1011190

RESUMO

Abstract Background: Obesity can be characterized by low-grade chronic inflammation and is associated with an excesso production of reactive oxygen species, factors that contribute to coronary heart disease and other cardiomyopathies. Objective: To verify the effects of resistance exercise training on oxidative stress and inflammatory parameters on mice with obesity induced by a high-fat diet (HFD). Methods: 24 Swiss mice were divided into 4 groups: standard diet (SD), SD + resistance exercise (SD + RE), diet-induced obesity (DIO), DIO + RE. The animals were fed SD or HFD for 26 weeks and performed resistance exercises in the last 8 weeks of the study. The insulin tolerance test (ITT) and body weight monitoring were performed to assess the clinical parameters. Oxidative stress and inflammation parameters were evaluated in the cardiac tissue. Data were expressed by mean and standard deviation (p < 0.05). Results: The DIO group had a significant increase in reactive oxygen species levels and lipid peroxidation with reduction after exercise. Superoxide dismutase and the glutathione system showed no significant changes in DIO animals, with an increase in SD + RE. Only catalase activity decreased with both diet and exercise influence. There was an increase in tumor necrosis factor-alpha (TNF-α) in the DIO group, characterizing a possible inflammatory condition, with a decrease when exposed to resistance training (DIO+RE). Conclusion: The DIO resulted in a redox imbalance in cardiac tissue, but the RE was able to modulate these parameters, as well as to control the increase in TNF-α levels.


Resumo Fundamento: A obesidade pode ser caracterizada por uma inflamação crônica de baixo grau e está associada à produção excessiva de espécies reativas de oxigênio, fatores que contribuem para doenças coronarianas e outras cardiomiopatias. Objetivo: Verificar os efeitos do treinamento resistido sobre os parâmetros de estresse oxidativo e parâmetro inflamatório em camundongos com obesidade induzida por dieta hiperlipídica (DIO). Métodos: 24 camundongos Swiss foram divididos em 4 grupos: dieta padrão (DP), DP + exercício resistido (DP+ER), obesidade induzida por DIO, DIO + ER. Os animais foram alimentados por 26 semanas com DP ou hiperlipídica realizando treinamento resistido nas 8 semanas finais do estudo. Para avaliar parâmetros clínicos foi realizado o teste de tolerância à insulina (TTI) e monitoramento do peso corporal. No tecido cardíaco foram avaliados parâmetros de estresse oxidativo e inflamação. Dados expressos por média e desvio padrão (p < 0,05). Resultados: O grupo DIO teve um aumento significativo nos níveis espécies reativas e peroxidação lipídica com redução após o exercício. A superóxido dismutase e o sistema glutationa não demonstraram alterações importantes nos animais DIO, com elevação perante DP+ER. Somente a atividade da catalase reduziu tanto com influência da dieta como do exercício. Ocorreu um aumento do fator de necrose tumoral-alfa (TNF-α) no grupo DIO, caracterizando um possível quadro inflamatório, com redução quando expostos ao treino resistido (DIO+ER). Conclusão: A DIO ocasionou um desequilíbrio redox no tecido cardíaco, porém o ER foi capaz de modular estes parâmetros, bem como controlar o aumento do TNF-α.


Assuntos
Animais , Masculino , Ratos , Peroxidação de Lipídeos/fisiologia , Fator de Necrose Tumoral alfa/análise , Estresse Oxidativo/fisiologia , Treinamento Resistido , Dieta Hiperlipídica/efeitos adversos , Miocárdio/química , Condicionamento Físico Animal , Fatores de Tempo , Resistência à Insulina , Inflamação/fisiopatologia
9.
Clinics ; 74: e833, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1011921

RESUMO

OBJECTIVES: Progressive decline of physiological processes with aging is normal. Aging is also associated with decreased functional capacity and onset of many diseases. This study evaluated the changes in physical fitness (PF), body composition (BC), and lipid profile (LP) in elderly men completing different training protocols. METHODS: Fifty-five men (age 60-80 years) were randomized into the following groups: without training, aerobic training on dry land, combined training on dry land, and combined training in water. Training was conducted for 8 weeks, and PF, LP, and BC were assessed at the beginning and end of the intervention. RESULTS: Significant improvements were observed in all parameters; however, combined programs on land or in water were more effective at improving strength and aerobic fitness. Combined exercise produced greater effects on BC and LP and some muscle fitness parameters; however, improvements in muscular and aerobic capacities occurred independently of exercise type or model. CONCLUSION: These results indicate that the effects of training occur regardless of training type or model, and are directly associated with training periodization, adherence, and regularity.


Assuntos
Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Exercício Físico/fisiologia , Aptidão Física/fisiologia , Força Muscular/fisiologia , Condicionamento Físico Humano/fisiologia , Condicionamento Físico Humano/métodos , Valores de Referência , Fatores de Tempo , Triglicerídeos/sangue , Composição Corporal/fisiologia , Envelhecimento/fisiologia , Antropometria , Colesterol/sangue , Amplitude de Movimento Articular/fisiologia , Fatores Etários
10.
Nutrition ; 54: 158-164, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29982143

RESUMO

OBJECTIVE: The aim of this study was to investigate the regulatory effects of taurine on the biochemical parameters of muscle injury by overuse. METHODS: Male Swiss mice were divided into four groups: control (Ctrl), overuse (Ov), taurine (Tau), and overuse plus taurine (OvTau). High-intensity exercise sessions were administered for 21 d with concomitant subcutaneous injections of taurine (150 mg/kg). The mice were then sacrificed. The quadriceps muscles were surgically removed for subsequent histologic analysis and evaluation of mitochondrial function, oxidative stress parameters, tissue repair, and DNA damage markers. RESULTS: The Ov group showed significant differences compared with the Ctrl group (all P <0.05). The fiber area decreased by 49.34%, whereas the centralized nuclei contents (Ctrl = 1.33%; Ov = 28.67%), membrane potential (Ctrlsuc = 179.05 arbitrary fluorescence units (AFUs), Ctrlsuc+ADP = 198.11 AFUs; Ovsuc = 482.95 AFUs, Ovsuc+ADP = 461.6 AFUs), complex I activity (Ctrl = 20.45 nmol ⋅ min ⋅ mg protein, Ov = 45.25 nmol ⋅ min ⋅ mg protein), hydrogen peroxide (Ctrlsuc = 1.08 relative fluorescence unit (RFU) ⋅ sec ⋅ mg protein, Ctrlsuc+ADP = 0.23 RFU ⋅ sec ⋅ mg protein; Ovsuc = 5.02 RFU ⋅ sec ⋅ mg protein, Ovsuc+ADP = 0.26 RFU ⋅ sec ⋅ mg protein) and malondialdehyde (Ctrl = 0.03 nmol ⋅ mg ⋅ protein, Ov = 0.06 nmol ⋅ mg ⋅ protein) levels, and DNA damage (Ctrlfreq = 7.17%, Ovfreq = 31.17%; Ctrlindex = 4.17, Ovindex = 72.5) were increased. Taurine administration reduced the number of centralized nuclei (OvTau = 5%), hydrogen peroxide levels (OvTausuc = 2.81 RFU ⋅ sec ⋅ mg protein, OvTaussuc+ADP = 1.54 RFU ⋅ sec ⋅ mg protein), membrane potential (OvTausuc = 220.18 AFUs, OvTaussuc+ADP = 235.28 AFUs), lipid peroxidation (OvTau = 0.02 nmol/mg protein), and DNA damage (OvTaufreq = 21.33%, OvTauindex = 47.83) and increased the fiber area by 54% (all P <0.05). CONCLUSION: Taken together, these data suggest that taurine supplementation modulates various cellular remodeling parameters after overuse-induced muscle damage, and that these positive effects may be related to its antioxidant capacity.


Assuntos
Antioxidantes/farmacologia , Transtornos Traumáticos Cumulativos/tratamento farmacológico , Músculo Esquelético/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Taurina/farmacologia , Animais , Transtornos Traumáticos Cumulativos/fisiopatologia , Modelos Animais de Doenças , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Condicionamento Físico Animal/fisiologia
11.
Mol Genet Metab ; 125(1-2): 104-111, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29935801

RESUMO

Tetrahydrobiopterin (BH4) is synthesized by the combined action of three metabolic pathways, namely de novo synthesis, recycling, and salvage pathways. The best-known function of BH4 is its mandatory action as a natural cofactor of the aromatic amino acid hydroxylases and nitric oxide synthases. Thus, BH4 is essential for the synthesis of nitric oxide, a retrograde neurotransmitter involved in learning and memory. We investigated the effect of BH4 (4-4000 pmol) intracerebroventricular administration on aversive memory, and on BH4 metabolism in the hippocampus of rodents. Memory-related behaviors were assessed in Swiss and C57BL/6 J mice, and in Wistar rats. It was consistently observed across all rodent species that BH4 facilitates aversive memory acquisition and consolidation by increasing the latency to step-down in the inhibitory avoidance task. This effect was associated with a reduced threshold to generate hippocampal long-term potentiation process. In addition, two inhibitors of memory formation (N(ω)-nitro-L-arginine methyl ester - L-Name - and dizocilpine - MK-801 -) blocked the enhanced effect of BH4 on memory, while the amnesic effect was not rescue by the co-administration of BH4 or a cGMP analog (8-Br-cGMP). The data strongly suggest that BH4 enhances aversive memory by activating the glutamatergic neurotransmission and the retrograde activity of NO. It was also demonstrated that BH2 can be converted into BH4 by activating the BH4 salvage pathway under physiological conditions in the hippocampus. This is the first evidence showing that BH4 enhances aversive memory and that the BH4 salvage pathway is active in the hippocampus.


Assuntos
Biopterinas/análogos & derivados , Hipocampo/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Óxido Nítrico/metabolismo , Animais , Arginina/análogos & derivados , Arginina/metabolismo , Biopterinas/administração & dosagem , Feminino , GTP Cicloidrolase/genética , Hipocampo/fisiologia , Humanos , Masculino , Memória de Longo Prazo/fisiologia , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase/genética , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
12.
Aging Dis ; 8(6): 887-898, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29344422

RESUMO

Regular exercise can decrease the deleterious effects of aging and limit the development and progression of chronic disease in elderly people, depending on the type, intensity, frequency, and duration of exercise. This study aimed to investigate the potential protective effects of different physical training programs on oxidative stress parameters and inflammatory and neurotrophic mediators in the serum of elderly men. Healthy male volunteers [60 to 80 years; n=55] were divided into four groups: control [Ctr, n=14], aerobic training on dry land [ATdl, n=12]; and combined training on dry land [CTdl, n=12] or in water [CTw, n=17]. The training protocols were performed over 8 weeks, three times per week. Each 1 h session included 5 min warming-up exercise, 50 min specific training [aerobic, strength, or combined], and 5 min stretching. Blood samples were drawn 72 h before [baseline] the beginning of the 8 weeks' protocol and 48 h after the last training session, processed, and the serum was aliquoted and stored at -70 °C until biochemical assessment of oxidative damage, antioxidant system and neurotrophic, growth and inflammatory factors. Elevated BDNF or IGF-1 levels were observed in the ATdl or CTdl groups, respectively. Overall oxidative stress parameters were improved including reduced lipid oxidative damage and increased thioredoxin reductase and glutathione peroxidase activities and total glutathione. Significant decreases in the inflammatory mediators IL-6 and IL-8 were observed; IL-6 was more susceptible to the effects of type of physical training. Thus, the effects of training in elderly men vary in an exercise type-dependent manner.

13.
Inflammation ; 39(4): 1395-404, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27206919

RESUMO

The aim of the study was to investigate the biochemical and molecular changes in the process of epidermal healing of burn injuries after therapeutic treatment with low-power laser (LPL) and light-emitting diode (LED). Rats were divided into six groups: skin without injury (Sham), burn wounds (BWs), BW + 660-nm LPL, BW + 904-nm LPL, BW + 632-nm LED, and BW + 850-nm LED. The burn wound model was performed using a 100 °C copper plate, with 10 s of contact in the skin. The irradiations started 24 h after the lesion and were performed daily for 7 days. The burn wound groups showed an increase in the superoxide production, dichlorofluorescein, nitrites, and high protein oxidative damage. The activities of glutathione peroxidase and catalase were also increased, and a significant reduction in glutathione levels was observed compared to the control group. However, treatments with 660-nm LPL and 850-nm LED promoted protection against to oxidative stress, and similar results were also observed in the IL-6 and pERK1/2 expression. Taken together, these results suggest that LPL 660 nm and LED 850 nm appear reduced in the inflammatory response and oxidative stress parameters, thus decreasing dermal necrosis and increasing granulation tissue formation, in fact accelerating the repair of burn wounds.


Assuntos
Queimaduras/terapia , Inflamação/terapia , Terapia com Luz de Baixa Intensidade/métodos , Cicatrização/efeitos da radiação , Animais , Queimaduras/patologia , Tecido de Granulação/efeitos da radiação , Lasers Semicondutores , Necrose/prevenção & controle , Estresse Oxidativo/efeitos da radiação , Ratos , Pele/patologia
14.
Physiol Rep ; 3(10)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26508737

RESUMO

Epidemiological and animal studies have shown that placental undernutrition impairs reproduction in adult offspring, but the underlying molecular mechanisms within the male genital tract remain unknown. Due to its special physiological characteristics in transport and the modulation of the environment to which its luminal content is exposed, we hypothesized that the vas deferens would be a highly sensitive target. The goals were to investigate whether intrauterine malnutrition affects molecular mechanisms related to Ca(2+)- and oxidative stress-modulated processes and causes structural alterations in the adult rat vas deferens that could attenuate fecundity and fertility. Male adult rats malnourished in utero had increased vas deferens weight associated with thickening of the muscular coat, a decrease in the total and haploid germ cells, a marked increase in the immature cells, and a decline in the numbers of pregnant females and total offspring per male rat. The ex vivo response of vas deferens from malnourished rats demonstrated an accentuated decrease in the contractile response to phenylephrine. The vas deferens had a marked decrease in Ca(2+) transport due to the uncoupling of Ca(2+)-stimulated ATP hydrolysis and ATP-driven Ca(2+) flux, and the downregulation of both sarco-endoplasmic reticulum Ca(2+)-ATPase 2 and the coupling factor 12-kDa FK506-binding protein. An increase in protein carbonylation (a marker of oxidative damage) and an imbalance between protein kinases C and A were observed as a legacy of undernutrition in early life. These results provide the structural and molecular basis to explain at least in part how maternal undernutrition affects fecundity and fertility in adult male rats.

15.
PLoS One ; 8(7): e69682, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922775

RESUMO

BACKGROUND: The aim of this work was to investigate the mechanisms by which chronic malnutrition (CM) affects vas deferens function, leading to compromised reproductive capacity. Previous studies have shown that maternal malnutrition affects the reproductive tracts of adult male offspring. However, little is known about the effects of CM, a widespread life-long condition that persists from conception throughout growth to adult life. METHODOLOGY/PRINCIPAL FINDINGS: Young adult male rats, which were chronically malnourished from weaning, presented decreased total and haploid cells in the vas deferens, hypertrophy of the muscle layer in the epididymal portion of the vas deferens and intense atrophy of the muscular coat in its prostatic portion. At a molecular level, the vas deferens tissue of CM rats exhibited a huge rise in lipid peroxidation and protein carbonylation, evidence of an accentuated increase in local reactive oxygen species levels. The kinetics of plasma membrane Ca(2+)-ATPase activity and its kinase-mediated phosphorylation by PKA and PKC in the vas deferens revealed malnutrition-induced modifications in velocity, Ca(2+) affinity and regulation of Ca(2+) handling proteins. The severely crippled content of the 12-kDa FK506 binding protein, which controls passive Ca(2+) release from the sarco(endo) plasmic reticulum, revealed another target of malnutrition related to intracellular Ca(2+) handling, with a potential effect on forward propulsion of sperm cells. As a possible compensatory response, malnutrition led to enhanced sarco(endo) plasmic reticulum Ca(2+)-ATPase activity, possibly caused by stimulatory PKA-mediated phosphorylation. CONCLUSIONS/SIGNIFICANCE: The functional correlates of these cellular and molecular hallmarks of chronic malnutrition on the vas deferens were an accentuated reduction in fertility and fecundity.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Desnutrição/patologia , Estresse Oxidativo , Reprodução , Ducto Deferente/metabolismo , Ducto Deferente/patologia , Envelhecimento/patologia , Animais , Transporte Biológico , Peso Corporal , ATPases Transportadoras de Cálcio/metabolismo , Contagem de Células , Sobrevivência Celular , Doença Crônica , Epididimo/patologia , Haploidia , Cinética , Masculino , Desnutrição/enzimologia , Músculos/patologia , Tamanho do Órgão , Oxirredução , Fosforilação , Ratos , Ratos Wistar , Espermatozoides/patologia , Testículo/patologia , Ducto Deferente/enzimologia
16.
Pulm Pharmacol Ther ; 22(6): 567-73, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19683592

RESUMO

Studies have shown that the oxidative power of cigarettes is related to the pathogenesis of several pulmonary diseases and that regular physical exercise contributes significantly to reducing the deleterious effects of cigarettes. The objective of the present study was to investigate the therapeutic effects of physical exercise on histological and oxidative stress markers in animals exposed to cigarette smoke. Thirty-six male, eight-week-old C57BL-6 mice were divided into four groups (n = 9 for each group): control, exercise, cigarette smoke, and cigarette smoke plus exercise. The cigarette smoke (CS) groups were exposed to cigarette smoke 3 times/day (4 cigarettes/session) for 60 consecutive days. The exercise groups were submitted to swimming physical training 5 days/week for eight weeks. Forty-eight hours after the last exercise and cigarette exposure, the animals were sacrificed using cervical traction. The right lung was removed, processed, and stored for future analysis. In addition to the analysis of collagen content (hydroxyproline), oxidant production (anion superoxide), antioxidant enzyme activity (SOD and CAT), and lipid and protein oxidative damage (TBARS and Carbonylation), histological and morphological studies were performed. The results revealed that the animals exposed to cigarette smoke showed enlargement and destruction of the alveolar septum and increases in the numbers of macrophages and neutrophils, as well as in the amount of collagen. Our results also showed a decrease in the volume density of elastic fibers and an increase in the volume density of airspaces. However, physical exercise partially improved these markers. Additionally, physical exercise decreased oxidant production and increased the activity of the enzymatic antioxidant defense system, but did not reverse lipid and protein oxidative damage induced by cigarette smoke. These results suggest that physical training partially improves histological and oxidative stress parameters in the lungs of animals chronically exposed to cigarette smoke and that other therapies can contribute to potentiate these effects.


Assuntos
Pulmão/fisiologia , Estresse Oxidativo/fisiologia , Condicionamento Físico Animal/fisiologia , Fumar/patologia , Animais , Catalase/metabolismo , Hidroxiprolina/metabolismo , Ácido Láctico/sangue , Peroxidação de Lipídeos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Oxirredução , Carbonilação Proteica/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA