Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731668

RESUMO

A high consumption of solid fats is linked to increased inflammation and a risk of cardiovascular diseases. Hence, in recent years, there has been increasing interest in the development of oleogels as a fat substitute in food products. Oleogels are edible gels that contain a large amount of liquid oils entrapped in a 3D network and that can potentially be applied to spreads, bakery goods, meat, and dairy products in order to lower their saturated fat content while maintaining a desirable food texture and mouthfeel. In this work, alginate cryogels were studied as templates for three different edible oils in the process of oleogel formation. Two different freezing regimes to obtain cryogels were employed in order to evaluate better the textural and morphological capabilities of cryogels to adsorb and retain edible oils. It was shown that rapid freezing in liquid nitrogen produces alginate cryogels with a lower density, higher porosity, and a greater ability to adsorb the tested oils. The highest uptake and holding oil capacity was achieved for olive oil, which reached a value of 792% and 82%, respectively. The best chewiness was found for an oleogel containing olive oil, whereas oleogels with the other two tested oils showed better springiness. Hence, the results presented in this work demonstrated that alginate-based cryogels can be effectively used as templates for oleogels and potentially find applications in the food industry.

2.
Int J Biol Macromol ; 263(Pt 1): 130159, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368972

RESUMO

In this work, chitosan films loaded with gallic acid and different content of chitin nanofibers were prepared and subjected to different characterization techniques. The results showed that the inclusion of gallic acid to chitosan films caused moderate decrease in water vapor permeability (by 29 %) and increased tensile strength of films (by 169 %) in comparison to the neat chitosan films. Furthermore, it was found that the addition of chitin nanofibers up to 30 % into chitosan/gallic acid films additionally improved tensile strength (by 474 %) and reduced plasticity of films (by 171 %), when compared to the chitosan/gallic acid films. Increased concentration of chitin nanofibers in films reduced the overall water vapor permeability of films by 51 %. In addition, gallic acid and chitin nanofibers had synergic effect on high chitosan film's antioxidant and antifungal activity toward Botrytis cinerea (both above 95 %). Finally, chitosan/gallic acid/chitin nanofibers films reduced decay incidence of strawberries, increased total soluble solid content, and promoted high production of some polyphenols during cold storage, in comparison to the control chitosan films and uncoated strawberry samples. Hence, these results suggest that chitosan/gallic acid/chitin nanofibers can present eco-sustainable approach for preservation of strawberries, giving them additional nutritional value.


Assuntos
Quitosana , Nanofibras , Quitosana/farmacologia , Quitosana/química , Quitina/química , Ácido Gálico/química , Nanofibras/química , Vapor , Embalagem de Alimentos/métodos
3.
RSC Adv ; 13(34): 24112-24128, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37577093

RESUMO

Polyhydroxyoctanoate, as a biocompatible and biodegradable biopolymer, represents an ideal candidate for biomedical applications. However, physical properties make it unsuitable for electrospinning, currently the most widely used technique for fabrication of fibrous scaffolds. To overcome this, it was blended with polylactic acid and polymer blend fibrous biomaterials were produced by electrospinning. The obtained PLA/PHO fibers were cylindrical, smaller in size, more hydrophilic and had a higher degree of biopolymer crystallinity and more favorable mechanical properties in comparison to the pure PLA sample. Cytotoxicity evaluation with human lung fibroblasts (MRC5 cells) combined with confocal microscopy were used to visualize mouse embryonic fibroblasts (MEF 3T3 cell line) migration and distribution showed that PLA/PHO samples support exceptional cell adhesion and viability, indicating excellent biocompatibility. The obtained results suggest that PLA/PHO fibrous biomaterials can be potentially used as biocompatible, biomimetic scaffolds for tissue engineering applications.

4.
Polymers (Basel) ; 15(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37514369

RESUMO

This paper highlights the potential of Sargassum algae, recovered from raw beach seaweed wastes, as a valid source of valuable sodium alginate. Alginate is a biodegradable, highly attractive polysaccharide widely used in food, pharmaceuticals, and biomedicine applications. The aim of this work is to employ a new eco-sustainable and cost-effective extractive method to obtain alginate as a raw material from pollutant organic Sargassum seaweeds. Algae were exposed to microwave pre-treatment under static and dynamic conditions, and three different extractive protocols were followed: (a) conventional, (b) hot water and (c) alkaline method. All samples were characterized by GPC, SEM, FTIR/ATR and TGA. It was found that alginate's best performances were obtained by the microwave dynamic pre-treatment method followed by alkaline extractive protocol. Nevertheless, the microwave pre-treatment of algae allowed the easiest breaking of their cell walls and the following fast releasing of sodium alginate. The authors demonstrated that microwave-enhanced extraction is an effective way to obtain sodium alginate from Sargassum-stranded seaweed waste materials in a cost-effective and eco-sustainable approach. They also assessed their applications as mulching films for agricultural applications.

5.
Foods ; 12(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37444192

RESUMO

Pesticides are extensively used in the cultivation and postharvest protection of citrus fruits, therefore continuous monitoring and health risk assessments of their residues are required. This study aimed to investigate the occurrence of pesticide residues on citrus fruits and to evaluate the acute and chronic risk for adults and children. The risk ranking of twenty-three detected pesticides was carried out according to a matrix ranking scheme. Multiple residues were detected in 83% of 76 analyzed samples. In addition, 28% contained pesticides at or above maximum residue levels (MRLs). The most frequently detected pesticides were imazalil, azoxystrobin, and dimethomorph. According to the risk ranking method, imazalil was classified in the high-risk group, followed by prochloraz, chlorpyrifos, azinphos-methyl, tebufenpyrad, and fenpiroximate, which were considered to pose a medium risk. The majority of detected pesticides (74%) posed a low risk. The health risk assessment indicated that imazalil and thiabendazole contribute to acute (HQa) and chronic (HQc) dietary risk, respectively. The HQc was negligible for the general population, while the HQa of imazalil and thiabendazole exceeded the acceptable level in the worst-case scenario. Cumulative chronic/acute risk (HIc/HIa) assessment showed that chronic risk was acceptable in all samples for children and adults, while the acute risk was unacceptable in 5.3% of citrus fruits for adults and 26% of citrus fruits for children. Sensitivity analyses indicated that the ingestion rate and individual body weight were the most influential risk factors.

6.
Polymers (Basel) ; 15(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37376244

RESUMO

As the mechanical properties of resin-based dental composite materials are highly relevant in clinical practice, diverse strategies for their potential enhancement have been proposed in the extant literature, aiming to facilitate their reliable use in dental medicine. In this context, the focus is primarily given to the mechanical properties with the greatest influence on clinical success, i.e., the longevity of the filling in the patient's mouth and its ability to withstand very strong masticatory forces. Guided by these objectives, the goal of the present study was to ascertain whether the reinforcement of dental composite resins with electrospun polyamide (PA) nanofibers would improve the mechanical strength of dental restoration materials. For this purpose, light-cure dental composite resins were interspersed with one and two layers comprising PA nanofibers in order to investigate the influence of such reinforcement on the mechanical properties of the resulting hybrid resins. One set of the obtained samples was investigated as prepared, while another set was immersed in artificial saliva for 14 days and was subsequently subjected to the same set of analyses, namely Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). Findings yielded by the FTIR analysis confirmed the structure of the produced dental composite resin material. They also provided evidence that, while the presence of PA nanofibers did not influence the curing process, it strengthened the dental composite resin. Moreover, flexural strength measurements revealed that the inclusion of a 16 µm-thick PA nanolayer enabled the dental composite resin to withstand a load of 3.2 MPa. These findings were supported by the SEM results, which further indicated that immersing the resin in saline solution resulted in a more compact composite material structure. Finally, DSC results indicated that as-prepared as well as saline-treated reinforced samples had a lower glass transition temperature (Tg) compared to pure resin. Specifically, while pure resin had a Tg of 61.6 °C, each additional PA nanolayer decreased the Tg by about 2 °C, while the further reduction was obtained when samples were immersed in saline for 14 days. These results show that electrospinning is a facile method for producing different nanofibers that can be incorporated into resin-based dental composite materials to modify their mechanical properties. Moreover, while their inclusion strengthens the resin-based dental composite materials, it does not affect the course and outcome of the polymerization reaction, which is an important factor for their use in clinical practice.

7.
Int J Biol Macromol ; 238: 124130, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36963553

RESUMO

In this work, chitin, as a biobased polymer, is used as a precursor to obtain a phosphorylated derivatives. The influence of the different degree of phosphorylation in chitin on pyrolysis pattern was investigated. In order to understand the pyrolysis mechanism and the potential application of phosphorylated chitins, the samples were pyrolyzed at different temperatures and analyzed by FTIR, SEM, and Py-GC/MS analysis. Moreover, the thermal degradation and the evolved gases during chitin degradation and its derivatives were measured. The results showed that phosphorylation of chitin decreased the thermal stability of biopolymer and significantly changed the pattern of pyrolysis compared to neat chitin. The production of long-chain hydrocarbons was detected during pyrolysis of phosphorylated chitin, whereas this was not the case with raw chitin. Those two effects were more pronounced as the degree of phosphorylation increased. Chitin with the degree of phosphorylation (DS 1.35) exhibited the highest selectivity (91 %) towards production of long-chain hydrocarbons (C12-C17) at 500 °C. Moreover, the obtained results allowed to propose, for the first time, the mechanism of pyrolysis of phosphorylated chitin.


Assuntos
Quitina , Pirólise , Quitina/análise , Cromatografia Gasosa-Espectrometria de Massas , Gases , Hidrocarbonetos
8.
Materials (Basel) ; 16(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36837065

RESUMO

Hydrolysed collagen obtained from bovine leather by-products were loaded with ginger essential oil and processed by the electrospinning technique for obtaining bioactive nanofibers. Particle size measurements of hydrolysed collagen, GC-MS analysis of ginger essential oil (EO), and structural and SEM examinations of collagen nanofibers loaded with ginger essential oil collected on waxed paper, cotton, and leather supports were performed. Antioxidant and antibacterial activities against Staphylococcus aureus and Escherichia coli and antifungal activity against Candida albicans were also determined. Data show that the hydrolysed collagen nanofibers loaded with ginger EO can be used in the medical, pharmaceutical, cosmetic, or niche fields.

9.
Polymers (Basel) ; 14(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36501645

RESUMO

In this research, the pectin monoliths were prepared via the sol-gel process through different routes of crosslinking and additional freeze-drying. The crosslinking reaction was induced by the use of calcium ions in aqueous solutions and in alcohol/water solutions. The resulting pectin monoliths obtained by freeze-drying were macroporous with open cells, limited specific surface area, moderate mechanical stability and moderate biodegradation rate. The presence of alcohol in crosslinking solution significantly changed the morphology of final pectin monoliths, which was evidenced by the reduction of their pore size for one order. The specific surface area of pectin monoliths obtained through the calcium-water-alcohol route was 25.7 m2/g, the Young compressive modulus was 0.52 MPa, and the biodegradation rate was 45% after 30 days of immersion in compost media. Considering that pectin can be obtained from food waste, and its physical properties could be tailored by different crosslinking routes, the pectin monoliths could find wide application in the pharmaceutical, agricultural, medical and food industries, providing sustainable development concepts.

10.
Mar Drugs ; 20(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35877751

RESUMO

Codium bernabei is a green alga that grows on Chilean coasts. The composition of its structural polysaccharides is still unknown. Hence, the aim of this work is to isolate and characterize the hot water extracted polysaccharide fractions. For this purpose, the water extracts were further precipitated in alcohol (TPs) and acid media (APs), respectively. Both fractions were characterized using different physicochemical techniques such as GC-MS, GPC, FTIR, TGA, and SEM. It is confirmed that the extracted fractions are mainly made of sulfated galactan unit, with a degree of sulfation of 19.3% (TPs) and 17.4% (ATs) and a protein content of 3.5% in APs and 15.6% in TPs. Other neutral sugars such as xylose, glucose, galactose, fucose, mannose, and arabinose were found in a molar ratio (0.05:0.6:1.0:0.02:0.14:0.11) for TPs and (0.05:0.31:1.0:0.03:0.1:0.13) for ATs. The molecular weight of the polysaccharide samples was lower than 20 kDa. Both polysaccharides were thermally stable (Tonset > 190 °C) and showed antioxidant activity according to the ABTS•+ and DPPH tests, where TPs fractions had higher scavenging activity (35%) compared to the APs fractions. The PT and APTTS assays were used to measure the anticoagulant activity of the polysaccharide fractions. In general, the PT activity of the TPs and APs was not different from normal plasma values. The exception was the TPs treatment at 1000 µg mL−1 concentration. The APTTS test revealed that clotting time for both polysaccharides was prolonged regarding normal values at 1000 µg mL−1. Finally, the antitumor test in colorectal carcinoma (HTC-116) cell line, breast cancer (MCF-7) and human leukemia (HL-60) cell lines showed the cytotoxic effect of TPs and APs. Those results suggest the potential biotechnological application of sulfate galactan polysaccharides isolated from a Chilean marine resource.


Assuntos
Clorófitas , Sulfatos , Anticoagulantes/química , Antioxidantes/farmacologia , Clorófitas/química , Galactanos/química , Humanos , Polissacarídeos/química , Sulfatos/química , Água
11.
Pharmaceutics ; 14(3)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35335904

RESUMO

The aim of this study is to investigate the possibility of using electrospun polylactide (PLA) fibers as a carrier of the phytoestrogen biochanin A. Polylactide fibers were prepared with different contents of biochanin A by using an electrospinning method at specific process parameters. The obtained electrospun polylactide fibers, as carriers of biochanin A, were characterized by means of different methods. The presented results showed that the mechanical properties of PLA have not changed significantly in the presence of biochanin A. Scanning electron microscopy showed that the fine fiber structure is retained without visible deformations and biochanin A crystals on the surface of the fibres. The analysis by infrared spectroscopy showed that there are no strong interactions between polylactide and biochanin A molecules, which is a good prerequisite for the diffusion release of biochanin A from PLA fibers.The release of biochanin A from PLA fibers in buffer solution pH 7.4 at 37 °C was monitored by applying the HPLC method. The rate and time of the release of biochanin A from PLA fibers is in correlation with the amount of the active ingredient in the matrix of the carrier and follows zero-order kinetics. PLA fibers with biochanin A exhibit concentration-dependent activity on proliferation and migration of L929 fibroblasts in direct culture system in vitro, and proved to be suitable for a potential formulation for use in wound healing.

12.
Foods ; 11(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35159510

RESUMO

Pectin is a natural biopolymer with broad applications in the food industry and it is suitable to prepare edible films to prolong food shelf-life. However, the main limitation of pectin-based films is their poor mechanical and barrier properties. Zeolite Y is a hydrophobic clay that can be used as film reinforcement material to improve its physicochemical and mechanical properties. In this work, the influence of high methoxyl citrus and apple pectin on physicochemical properties of biopolymer films modified with zeolite Y (0.05-0.2 wt%) was investigated. The films were characterized by FTIR, TGA, WAXD, mechanical analysis, and water vapor permeability analysis, and a potential film application is presented. The WAXD and FTIR analysis demonstrated that the strongest interaction between pectin chains and zeolite Y occurred when citrus high methylated pectin was used. Adding 0.2 wt% of zeolite Y into citrus high methylated pectin matrix enhanced the tensile strength by 66%, thermal stability by 13%, and water vapor barrier by 54%. In addition, fruit shelf-life test was performed, where strawberries were sealed in film. It was shown that sealed strawberries maintained a better color and healthy appearance than the control treatment after 7 days at 10 °C. This study enabled the development of biocomposite films with improved properties for potential application in food packaging.

13.
Molecules ; 27(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35163871

RESUMO

Plant biochemistry studies have increased in recent years due to their potential to improve human health. Argylia radiata is an extremophile plant with an interesting polyphenolic profile. However, its biomass is scarce and occasionally available. Argylia in vitro biomass was obtained from tissue culture and compared with in vivo roots regarding its polyphenolic and flavonoid content. Different solvents were used to prepare extracts from the in vitro tissue of callus and aerial plant organs and in vivo roots. UPLC-MS/MS was used to assess the chemical composition of each extract. ORAC-FL and scavenging of free radicals (DPPH and OH) methods were used to determine the antioxidant capacity of extracts. Furthermore, the biological activity of the extracts was established using the cellular antioxidant activity method. The vitroplants were a good source of polyphenols (25-68 mg GAE/100 g tissue FW), and methanol was the most efficient solvent. Eight polyphenolic compounds were identified, and their antioxidant properties were investigated by different chemical methods with EPR demonstrating its specific scavenging activity against free radicals. All extracts showed cellular dose-dependent antioxidant activity. The methanolic extract of vitroplants showed the highest cellular antioxidant activity (44.6% and 51%) at 1 and 10 µg/mL of extract, respectively. Vitroplants of A. radiata are proposed as a biotechnological product as a source of antioxidant compounds with multiple applications.


Assuntos
Antioxidantes/farmacologia , Begoniaceae/química , Sequestradores de Radicais Livres/farmacologia , Raízes de Plantas/química , Polifenóis/análise , Polifenóis/farmacologia , Solventes/química
14.
Molecules ; 26(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34946559

RESUMO

This study investigated the biocomposite pectin films enriched with murta (Ugni molinae T.) seed polyphenolic extract and reinforced by chitin nanofiber. The structural, morphological, mechanical, barrier, colorimetric, and antioxidant activity of films were evaluated. The obtained data clearly demonstrated that the addition of murta seed extract and the high load of chitin nanofibers (50%) provided more cohesive and dense morphology of films and improved the mechanical resistance and water vapor barrier in comparison to the control pectin film. The antioxidant activity ranged between 71% and 86%, depending on the film formulation and concentration of chitin nanofibers. The presented results highlight the potential use of chitin nanofibers and murta seed extract in the pectin matrix to be applied in functional food coatings and packaging, as a sustainable solution.


Assuntos
Materiais Biocompatíveis/química , Quitina/química , Myrtaceae/química , Nanofibras/química , Pectinas/química , Extratos Vegetais/química , Materiais Biocompatíveis/isolamento & purificação , Embalagem de Alimentos , Tamanho da Partícula , Pectinas/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Sementes/química
15.
Polymers (Basel) ; 13(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34883755

RESUMO

The development of edible films and coatings in the food packaging industry presents one of the modern strategies for protecting food products and ensuring their freshness and quality during their shelf lives. The application of microbial polysaccharides to the development of food package materials, as an alternative option to the commonly used plastic materials, is both economic and environmentally favorable. New edible films were developed using dextran from lactic acid bacterium Leuconostoc mesenteroides T3, and additionally plasticized by different concentrations of polyglycerol. The best tensile strength of the films was obtained using a formulation that contained 10 wt% of polyglycerol, which corresponded to a value of 4.6 MPa. The most flexible formulation, with elongation at break of 602%, was obtained with 30 wt% of polyglycerol. Water vapor permeability values of the films synthesized in this study were in the range of (3.45-8.81) ∗ 10-12 g/m s Pa. Such low values indicated that they could be efficient in preventing fruit from drying out during storage. Thus, the film formulations were used to coat blueberries in order to assess their quality during a storage time of 21 days at 8 °C. The results showed that dextran/polyglycerol films could be efficient in extending the shelf life of blueberries, which was evidenced by lower weight loss and total sugar solids values, as well as a delay in titratable acidity, in comparison to the uncoated blueberries.

16.
Int J Biol Macromol ; 186: 92-99, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34246675

RESUMO

The efficient use of waste from food processing industry is one of the innovative approaches within sustainable development, because it can be transferred into added value products, which could improve economic, energetic and environmental sectors. In this context, the squid pen waste from seafood industry was used as raw material to obtain nanofibrous ß-chitin films. In order to extend functionality of obtained films, elderberry extract obtained from biomass was added at different concentrations. The tensile strength of chitin-elderberry extract films was improved by 52%, elongation at break by 153% and water vapor barrier by 65%. The obtained material showed distinct color change when subjected to acidic or basic solutions. It was proven by CIELab color analysis that all color changes could be easily perceived visually. In addition, the obtained nanofibrous film was successfully used to monitor the freshness of Hake fish. Namely, when the film was introduced in a package that contained fresh fish, its color was efficiently changed within the time during the storage at 4 °C. The obtained results demonstrated that food processing waste could be efficiently valorized, and could give sustainable food package design as a spoilage indicator of high protein food.


Assuntos
Quitina/isolamento & purificação , Decapodiformes , Manipulação de Alimentos , Embalagem de Alimentos , Nanofibras , Alimentos Marinhos , Materiais Inteligentes/isolamento & purificação , Resíduos , Animais , Cor , Colorimetria , Contaminação de Alimentos , Armazenamento de Alimentos , Frutas , Gadiformes , Concentração de Íons de Hidrogênio , Nanotecnologia , Extratos Vegetais/química , Sambucus , Temperatura , Resistência à Tração , Tempo
17.
Mar Drugs ; 19(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810536

RESUMO

ß-chitin was isolated from marine waste, giant Humboldt squid Dosidicus gigas, and further converted to nanofibers by use of a collider machine under acidic conditions (pH 3). The FTIR, TGA, and NMR analysis confirmed the efficient extraction of ß-chitin. The SEM, TEM, and XRD characterization results verified that ß-chitin crystalline structure were maintained after mechanical treatment. The mean particle size of ß-chitin nanofibers was in the range between 10 and 15 nm, according to the TEM analysis. In addition, the ß-chitin nanofibers were converted into films by the simple solvent-casting and drying process at 60 °C. The obtained films had high lightness, which was evidenced by the CIELAB color test. Moreover, the films showed the medium swelling degree (250-290%) in aqueous solutions of different pH and good mechanical resistance in the range between 4 and 17 MPa, depending on film thickness. The results obtained in this work show that marine waste can be efficiently converted to biomaterial by use of mild extractive conditions and simple mechanical treatment, offering great potential for the future development of sustainable multifunctional materials for various industrial applications such as food packaging, agriculture, and/or wound dressing.


Assuntos
Materiais Biocompatíveis , Quitina/isolamento & purificação , Decapodiformes/metabolismo , Nanofibras , Resíduos , Animais , Configuração de Carboidratos , Quitina/química , Tamanho da Partícula , Propriedades de Superfície , Viscosidade
18.
Polymers (Basel) ; 12(12)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322661

RESUMO

The aim of this study was evaluation of the physico-chemical properties and adhesion of microorganisms on poly(lactic acid) (PLA)-based films loaded with grapevine cane extract (5-15 wt%). The films were processed in a compression molding machine and characterized by mechanical, thermal, water vapor barrier and microbiological tests. The best physical-chemical properties for PLA film containing 10 wt% of extract were obtained. The addition of 10 wt% of extract into PLA films led to decrease of tensile strength for 52% and increase in elongation at break for 30%. The water vapor barrier of this film formulation was enhanced for 55%. All films showed thermal stability up to 300 °C. The low release of the active compounds from films negatively influenced their antimicrobial and antifungal activity. Botrytis cinerea growth inhibition onto PLA containing extracts (PLA-E) films was in the range between 15 and 35%. On the other side, PLA/extract films exhibited the antiadhesive properties against Pseudomonas aeruginosa, Pectobacterium carotovorum, Saccharomyces pastorianus, and Listeria monocytogenes, which could imply their potential to be used as sustainable food packaging materials for preventing microbial contamination of food.

19.
J Sci Food Agric ; 100(13): 4987-4994, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32597512

RESUMO

BACKGROUND: Quinoa (Chenopodium quinoa Willd) is an Andean original pseudocereal with high nutritional value. During quinoa processing, large amounts of saponin-rich husks byproducts are obtained. Quinoa saponins, which are biologically active, could be used for various agriculture purposes. Silver nanoparticles have increasingly attracted attention for the management of crop diseases in agriculture. In this work, silver nanoparticles are synthesized by a sustainable and green method, using quinoa husk saponin extract (QE) to evaluate their potential for application in agriculture as biostimulants. RESULTS: Quinoa extract was obtained and characterized by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Sixteen saponin congeners were successfully identified and quantified. The QE obtained was used as a reducing agent for silver ions to synthesize silver nanoparticles (QEAgNPs) under mild conditions. The morphology, particle size, and stability of Ag nanoparticles were investigated by transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-visible), energy-dispersive X-ray (EDS), zeta potential, and Fourier transform infrared spectroscopy with attenuated total reflection (FTIR-ATR). Ultraviolet-visible spectroscopy measurements confirmed the formation of silver nanoparticles in the presence of QE, with estimated particle sizes in a range between 5 and 50 nm. According to the zeta potential values, highly stable nanoparticles were formed. The QE and QEAgNPs (200-1000 µg/mL) were also tested in radish seed bioassay to evaluate their phytotoxicity. The seed germination assays revealed that QEAgNPs possessed a phytostimulant effect on radish seeds in a dose-dependent manner, and no phytotoxicity was observed for both QE and QEAgNPs. CONCLUSION: Silver nanoparticles obtained by a so-called 'green' method could be considered as good candidates for application in the agricultural sector for seed treatment, or as foliar sprays and plant-growth-promoters. © 2020 Society of Chemical Industry.


Assuntos
Agroquímicos/química , Chenopodium quinoa/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Saponinas/química , Prata/química , Resíduos/análise , Agroquímicos/farmacologia , Composição de Medicamentos , Raphanus/efeitos dos fármacos , Raphanus/crescimento & desenvolvimento , Saponinas/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Foods ; 9(4)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290138

RESUMO

Active packaging represents a large and diverse group of materials, with its main role being to prolong the shelf-life of food products. In this work, active biomaterials based on thermoplastic starch-containing cinnamon oil emulsions were prepared by the compression molding technique. The thermal, mechanical, and antifungal properties of obtained materials were evaluated. The results showed that the encapsulation of cinnamon oil emulsions did not influence the thermal stability of materials. Mechanical resistance to break was reduced by 27.4%, while elongation at break was increased by 44.0% by the addition of cinnamon oil emulsion. Moreover, the novel material provided a decrease in the growth rate of Botrytis cinerea by 66%, suggesting potential application in food packaging as an active biomaterial layer to hinder further contamination of fruits during the storage and transport period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA