Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430788

RESUMO

Hedgehog signaling is one of the key regulators of morphogenesis, cell differentiation, and regeneration. While the Hh pathway is present in all bilaterians, it has mainly been studied in model animals such as Drosophila and vertebrates. Despite the conservatism of its core components, mechanisms of signal transduction and additional components vary in Ecdysozoa and Deuterostomia. Vertebrates have multiple copies of the pathway members, which complicates signaling implementation, whereas model ecdysozoans appear to have lost some components due to fast evolution rates. To shed light on the ancestral state of Hh signaling, models from the third clade, Spiralia, are needed. In our research, we analyzed the transcriptomes of two spiralian animals, errantial annelid Platynereis dumerilii (Nereididae) and sedentarian annelid Pygospio elegans (Spionidae). We found that both annelids express almost all Hh pathway components present in Drosophila and mouse. We performed a phylogenetic analysis of the core pathway components and built multiple sequence alignments of the additional key members. Our results imply that the Hh pathway compositions of both annelids share more similarities with vertebrates than with the fruit fly. Possessing an almost complete set of single-copy Hh pathway members, lophotrochozoan signaling composition may reflect the ancestral features of all three bilaterian branches.


Assuntos
Anelídeos , Poliquetos , Animais , Camundongos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Filogenia , Anelídeos/genética , Vertebrados/metabolismo , Poliquetos/genética , Poliquetos/metabolismo , Drosophila/metabolismo
2.
Curr Biol ; 32(21): 4607-4619.e7, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36126656

RESUMO

Over the past decade, molecular phylogenetics has reshaped our understanding of the fungal tree of life by unraveling a hitherto elusive diversity of the protistan relatives of Fungi. Aphelida constitutes one of these novel deep branches that precede the emergence of osmotrophic fungal lifestyle and hold particular significance as the pathogens of algae. Here, we obtain and analyze the genomes of aphelid species Amoeboaphelidium protococcarum and Amoeboaphelidium occidentale. Genomic data unmask the vast divergence between these species, hidden behind their morphological similarity, and reveal hybrid genomes with a complex evolutionary history in two strains of A. protococcarum. We confirm the proposed sister relationship between Aphelida and Fungi using phylogenomic analysis and chart the reduction of characteristic proteins involved in phagocytic activity in the evolution of Holomycota. Annotation of aphelid genomes demonstrates the retention of actin nucleation-promoting complexes associated with phagocytosis and amoeboid motility and also reveals a conspicuous expansion of receptor-like protein kinases, uncharacteristic of fungal lineages. We find that aphelids possess multiple carbohydrate-processing enzymes that are involved in fungal cell wall synthesis but do not display rich complements of algal cell-wall-processing enzymes, suggesting an independent origin of fungal plant-degrading capabilities. Aphelid genomes show that the emergence of Fungi from phagotrophic ancestors relied on a common cell wall synthetic machinery but required a different set of proteins for digestion and interaction with the environment.


Assuntos
Eucariotos , Genômica , Eucariotos/fisiologia , Filogenia , Plantas/genética , Fungos/genética , Fungos/metabolismo , Genoma Fúngico , Evolução Molecular
3.
F1000Res ; 11: 583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36447930

RESUMO

Background: Rhizocephalan barnacles stand out in the diverse world of metazoan parasites. The body of a rhizocephalan female is modified beyond revealing any recognizable morphological features, consisting of the interna, a system of rootlets, and the externa, a sac-like reproductive body. Moreover, rhizocephalans have an outstanding ability to control their hosts, literally turning them into "zombies". Despite all these amazing traits, there are no genomic or transcriptomic data about any Rhizocephala. Methods: We collected transcriptomes from four body parts of an adult female rhizocephalan Peltogaster reticulata: the externa, and the main, growing, and thoracic parts of the interna. We used all prepared data for the de novo assembly of the reference transcriptome. Next, a set of encoded proteins was determined, the expression levels of protein-coding genes in different parts of the parasite's body were calculated and lists of enriched bioprocesses were identified. We also in silico identified and analyzed sets of potential excretory / secretory proteins. Finally, we applied phylostratigraphy and evolutionary transcriptomics approaches to our data.  Results: The assembled reference transcriptome included transcripts of 12,620 protein-coding genes and was the first for any rhizocephalan. Based on the results obtained, the spatial heterogeneity of protein-coding gene expression in different regions of the adult female body of P. reticulata was established. The results of both transcriptomic analysis and histological studies indicated the presence of germ-like cells in the lumen of the interna. The potential molecular basis of the interaction between the nervous system of the host and the parasite's interna was also determined. Given the prolonged expression of development-associated genes, we suggest that rhizocephalans "got stuck in their metamorphosis", even at the reproductive stage. Conclusions: The results of the first comparative transcriptomic analysis for Rhizocephala not only clarified but also expanded the existing ideas about the biology of these extraordinary parasites.


Assuntos
Parasitos , Thoracica , Animais , Feminino , Thoracica/genética , Thoracica/anatomia & histologia , Transcriptoma , Interações Hospedeiro-Parasita , Reprodução
4.
Parasit Vectors ; 13(1): 559, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33168070

RESUMO

BACKGROUND: Parasitic flatworms (Trematoda: Digenea) represent one of the most remarkable examples of drastic morphological diversity among the stages within a life cycle. Which genes are responsible for extreme differences in anatomy, physiology, behavior, and ecology among the stages? Here we report a comparative transcriptomic analysis of parthenogenetic and amphimictic generations in two evolutionary informative species of Digenea belonging to the family Psilostomatidae. METHODS: In this study the transcriptomes of rediae, cercariae and adult worm stages of Psilotrema simillimum and Sphaeridiotrema pseudoglobulus, were sequenced and analyzed. High-quality transcriptomes were generated, and the reference sets of protein-coding genes were used for differential expression analysis in order to identify stage-specific genes. Comparative analysis of gene sets, their expression dynamics and Gene Ontology enrichment analysis were performed for three life stages within each species and between the two species. RESULTS: Reference transcriptomes for P. simillimum and S. pseudoglobulus include 21,433 and 46,424 sequences, respectively. Among 14,051 orthologous groups (OGs), 1354 are common and specific for two analyzed psilostomatid species, whereas 13 and 43 OGs were unique for P. simillimum and S. pseudoglobulus, respectively. In contrast to P. simillimum, where more than 60% of analyzed genes were active in the redia, cercaria and adult worm stages, in S. pseudoglobulus less than 40% of genes had such a ubiquitous expression pattern. In general, 7805 (36.41%) and 30,622 (65.96%) of genes were preferentially expressed in one of the analyzed stages of P. simillimum and S. pseudoglobulus, respectively. In both species 12 clusters of co-expressed genes were identified, and more than a half of the genes belonging to the reference sets were included into these clusters. Functional specialization of the life cycle stages was clearly supported by Gene Ontology enrichment analysis. CONCLUSIONS: During the life cycles of the two species studied, most of the genes change their expression levels considerably, consequently the molecular signature of a stage is not only a unique set of expressed genes, but also the specific levels of their expression. Our results indicate unexpectedly high level of plasticity in gene regulation between closely related species. Transcriptomes of P. simillimum and S. pseudoglobulus provide high quality reference resource for future evolutionary studies and comparative analyses.


Assuntos
Estágios do Ciclo de Vida , Transcriptoma , Trematódeos/crescimento & desenvolvimento , Trematódeos/genética , Animais , Cercárias/genética , Biologia Computacional , Ontologia Genética , Caramujos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA