Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; : e0062224, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953377

RESUMO

African swine fever virus causes a lethal hemorrhagic disease in domestic swine and wild boar for which currently licensed commercial vaccines are only available in Vietnam. Development of subunit vaccines is complicated by the lack of information on protective antigens as well as suitable delivery systems. Our previous work showed that a pool of eight African swine fever virus genes vectored using an adenovirus prime and modified vaccinia virus boost could prevent fatal disease after challenge with a virulent genotype I isolate of the virus. Here, we identify antigens within this pool of eight that are essential for the observed protection and demonstrate that adenovirus-prime followed by adenovirus-boost can also induce protective immune responses against genotype I African swine fever virus. Immunization with a pool of adenoviruses expressing individual African swine fever virus genes partially tailored to genotype II virus did not protect against challenge with genotype II Georgia 2007/1 strain, suggesting that different antigens may be required to induce cross-protection for genetically distinct viruses. IMPORTANCE: African swine fever virus causes a lethal hemorrhagic disease in domestic pigs and has killed millions of animals across Europe and Asia since 2007. Development of safe and effective subunit vaccines against African swine fever has been problematic due to the complexity of the virus and a poor understanding of protective immunity. In a previous study, we demonstrated that a complex combination of eight different virus genes delivered using two different viral vector vaccine platforms protected domestic pigs from fatal disease. In this study, we show that three of the eight genes are required for protection and that one viral vector is sufficient, significantly reducing the complexity of the vaccine. Unfortunately, this combination did not protect against the current outbreak strain of African swine fever virus, suggesting that more work to identify immunogenic and protective viral proteins is required to develop a truly effective African swine fever vaccine.

2.
Front Vet Sci ; 11: 1390486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868498

RESUMO

Activation-induced markers (AIMs) are frequently analyzed to identify re-activated human memory T cells. However, in pigs the analysis of AIMs is still not very common. Based on available antibodies, we designed a multi-color flow cytometry panel comprising pig-specific or cross-reactive antibodies against CD25, CD69, CD40L (CD154), and ICOS (CD278) combined with lineage/surface markers against CD3, CD4, and CD8α. In addition, we included an antibody against tumor necrosis factor alpha (TNF-α), to study the correlation of AIM expression with the production of this abundant T cell cytokine. The panel was tested on peripheral blood mononuclear cells (PBMCs) stimulated with phorbol 12-myristate 13-acetate (PMA)/ionomycin, Staphylococcus enterotoxin B (SEB) or PBMCs from African swine fever virus (ASFV) convalescent pigs, restimulated with homologous virus. PMA/ionomycin resulted in a massive increase of CD25/CD69 co-expressing T cells of which only a subset produced TNF-α, whereas CD40L expression was largely associated with TNF-α production. SEB stimulation triggered substantially less AIM expression than PMA/ionomycin but also here CD25/CD69 expressing T cells were identified which did not produce TNF-α. In addition, CD40L-single positive and CD25+CD69+CD40L+TNF-α- T cells were identified. In ASFV restimulated T cells TNF-α production was associated with a substantial proportion of AIM expressing T cells but also here ASFV-reactive CD25+CD69+TNF-α- T cells were identified. Within CD8α+ CD4 T cells, several CD25/CD40L/CD69/ICOS defined phenotypes expanded significantly after ASFV restimulation. Hence, the combination of AIMs tested will allow the identification of primed T cells beyond the commonly used cytokine panels, improving capabilities to identify the full breadth of antigen-specific T cells in pigs.

3.
Microbiol Resour Announc ; 13(4): e0006724, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38526091

RESUMO

African swine fever virus causes a lethal hemorrhagic disease of domestic pigs. The NAM P1/1995 isolate was originally described as B646L genotype XVIII; however, full genome sequencing revealed that this assignment was incorrect.

4.
Sci Rep ; 14(1): 5944, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467747

RESUMO

African swine fever (ASF) is a global threat to animal health and food security. ASF is typically controlled by strict biosecurity, rapid diagnosis, and culling of affected herds. Much progress has been made in developing modified live virus vaccines against ASF. There is host variation in response to ASF infection in the field and under controlled conditions. To better understand the dynamics underlying this host differential morbidity, whole transcriptome profiling was carried out in twelve immunized and five sham immunized pigs. Seventeen MHC homozygous inbred Large white Babraham pigs were sampled at three time points before and after the challenge. The changes in the transcriptome profiles of infected animals were surveyed over time. In addition, the immunization effect on the host response was studied as well among the contrasts of all protection subgroups. The results showed two promising candidate genes to distinguish between recovered and non-recovered pigs after infection with a virulent African swine fever virus (ASFV) pre-infection: HTRA3 and GFPT2 (padj < 0.05). Variant calling on the transcriptome assemblies showed a two-base pair insertion into the ACOX3 gene closely located to HTRA3 that may regulate its expression as a putative genomic variant for ASF. Several significant DGEs, enriched gene ontology (GO) terms, and KEGG pathways at 1 day and 7 days post-infection, compared to the pre-infection, indicate a significant inflammation response immediately after ASF infection. The presence of the virus was confirmed by the mapping of RNA-Seq reads on two whole viral genome sequences. This was concordant with a higher virus load in the non-recovered animals 7 days post-infection. There was no transcriptome signature on the immunization at pre-infection and 1 day post-infection. More samples and data from additional clinical trials may support these findings.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Transcriptoma , Perfilação da Expressão Gênica , Imunização
5.
Subcell Biochem ; 106: 283-331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38159232

RESUMO

African swine fever virus is a complex double-stranded DNA virus that exhibits tropism for cells of the mononuclear phagocytic system. Virus replication is a multi-step process that involves the nucleus of the host cell as well the formation of large perinuclear sites where progeny virions are assembled prior to transport to, and budding through, the plasma membrane. Like many viruses, African swine fever virus reorganises the cellular architecture to facilitate its replication and has evolved multiple mechanisms to avoid the potential deleterious effects of host cell stress response pathways. However, how viral proteins and virus-induced structures trigger cellular stress pathways and manipulate the subsequent responses is still relatively poorly understood. African swine fever virus alters nuclear substructures, modulates autophagy, apoptosis and the endoplasmic reticulum stress response pathways. The viral genome encodes for at least 150 genes, of which approximately 70 are incorporated into the virion. Many of the non-structural genes have not been fully characterised and likely play a role in host range and modifying immune responses. As the field moves towards approaches that take a broader view of the effect of expression of individual African swine fever genes, we summarise how the different steps in virus replication interact with the host cell and the current state of knowledge on how it modulates the resulting stress responses.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/metabolismo , Proteínas Virais/genética , Interações Hospedeiro-Patógeno , Replicação Viral
6.
Vaccines (Basel) ; 11(10)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37896980

RESUMO

African swine fever (ASF) is a lethal disease in pigs that has grave socio-economic implications worldwide. For the development of vaccines against the African swine fever virus (ASFV), immunogenic antigens that generate protective immune responses need to be identified. There are over 150 viral proteins-many of which are uncharacterized-and humoral immunity to ASFV has not been closely examined. To profile antigen-specific antibody responses, we developed luciferase-linked antibody capture assays (LACAs) for a panel of ASFV capsid proteins and screened sera from inbred and outbred animals that were previously immunized with low-virulent ASFV before challenge with virulent ASFV. Antibodies to B646L/p72, D117L/p17, M1249L, and E120R/p14.5 were detected in this study; however, we were unable to detect B438L-specific antibodies. Anti-B646L/p72 and B602L antibodies were associated with recovery from disease after challenges with genotype I OUR T88/1 but not genotype II Georgia 2007/1. Antibody responses against M1249L and E120R/p14.5 were observed in animals with reduced clinical signs and viremia. Here, we present LACAs as a tool for the targeted profiling of antigen-specific antibody responses to inform vaccine development.

7.
Pathogens ; 12(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37623982

RESUMO

African swine fever virus (ASFV) is known to be very stable and can remain infectious over long periods of time especially at low temperatures and within different matrices, particularly those containing animal-derived organic material. However, there are some gaps in our knowledge pertaining to the survivability and infectivity of ASFV in groundwater. This study aims to determine the stability and infectivity of the cell culture-adapted ASFV strain BA71V by plaque assay after incubation of the virus within river water samples at three different environmentally relevant temperatures (4 °C, 15 °C, and 21 °C) over the course of 42 days. The results from this study indicate that ASFV can remain stable and infectious when maintained at 4 °C in river water for more than 42 days, but as incubation temperatures are increased, the stability is reduced, and the virus is no longer able to form plaques after 28 days and 14 days, respectively, when stored at 15 °C and 21 °C. Characterizing the survivability of ASFV in groundwater can allow us to develop more appropriate inactivation and disinfection methods to support disease control and mitigate ASFV outbreaks.

8.
Viruses ; 15(8)2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37631977

RESUMO

Viral replication fully relies on the host cell machinery, and physical interactions between viral and host proteins mediate key steps of the viral life cycle. Therefore, identifying virus-host protein-protein interactions (PPIs) provides insights into the molecular mechanisms governing virus infection and is crucial for designing novel antiviral strategies. In the case of the African swine fever virus (ASFV), a large DNA virus that causes a deadly panzootic disease in pigs, the limited understanding of host and viral targets hinders the development of effective vaccines and treatments. This review summarizes the current knowledge of virus-host and virus-virus PPIs by collecting and analyzing studies of individual viral proteins. We have compiled a dataset of experimentally determined host and virus protein targets, the molecular mechanisms involved, and the biological functions of the identified virus-host and virus-virus protein interactions during infection. Ultimately, this work provides a comprehensive and systematic overview of ASFV interactome, identifies knowledge gaps, and proposes future research directions.


Assuntos
Vírus da Febre Suína Africana , Animais , Suínos , Antivirais , Interações Microbianas , Replicação Viral
9.
Sci Rep ; 13(1): 5318, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002287

RESUMO

African swine fever (ASF) caused by ASF virus (ASFV) is an infectious transboundary animal disease notifiable to the World Organization for Animal Health causing high mortality in domestic pigs and wild boars threatening the global domestic pig industry. To date, twenty-four ASFV genotypes have been described and currently genotypes II, IX, X, XV and XVI are known to be circulating in Tanzania. Despite the endemic status of ASF in Tanzania, only one complete genome of ASFV from the country has been described. This study describes the first complete genome sequence of ASFV genotype XV. In addition, the first Tanzanian complete genome of ASFV genotype IX and three ASFV strains belonging to genotype II collected during ASF outbreaks in domestic pigs in Tanzania were determined in this study using Illumina sequencing and comparative genomics analysis. The generated ASFV complete genome sequences ranged from 171,004 to 184,521 base pairs in length with an average GC content of 38.53% and encoded 152 to 187 open reading frames. The results of this study provide insights into the genomic structure of ASFV and can be used to monitor changes within the ASFV genome and improve our understanding of ASF transmission dynamics.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Sus scrofa , Vírus da Febre Suína Africana/genética , Tanzânia/epidemiologia , Genótipo
10.
Viruses ; 16(1)2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275939

RESUMO

The 2023 International African Swine Fever Workshop (IASFW) took place in Beijing, China, on 18-20 September 2023. It was jointly organized by the U.S.-China Center for Animal Health (USCCAH) at Kansas State University (KSU) and the Chinese Veterinary Drug Association (CVDA) and sponsored by the United States Department of Agriculture Foreign Agricultural Service (USDA-FAS), Harbin Veterinary Research Institute, and Zoetis Inc. The objective of this workshop was to provide a platform for ASF researchers around the world to unite and share their knowledge and expertise on ASF control and prevention. A total of 24 outstanding ASF research scientists and experts from 10 countries attended this meeting. The workshop included presentations on current ASF research, opportunities for scientific collaboration, and discussions of lessons and experiences learned from China/Asia, Africa, and Europe. This article summarizes the meeting highlights and presents some critical issues that need to be addressed for ASF control and prevention in the future.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Humanos , Febre Suína Africana/prevenção & controle , Febre Suína Africana/epidemiologia , Ásia , China/epidemiologia , África/epidemiologia , Sus scrofa , Surtos de Doenças/veterinária
11.
Viruses ; 14(7)2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35891467

RESUMO

African swine fever virus is currently present in all of the world's continents apart from Antarctica, and efforts to control the disease are hampered by the lack of a commercially available vaccine. The Babraham large white pig is a highly inbred line that could represent a powerful tool to improve our understanding of the protective immune responses to this complex pathogen; however, previous studies indicated differential vaccine responses after the African swine fever virus challenge of inbred minipigs with different swine leukocyte antigen haplotypes. Lymphocyte numbers and African swine fever virus-specific antibody and T-cell responses were measured in inbred and outbred animals after inoculation with a low virulent African swine fever virus isolate and subsequent challenge with a related virulent virus. Surprisingly, diminished immune responses were observed in the Babraham pigs when compared to the outbred animals, and the inbred pigs were not protected after challenge. Recovery of Babraham pigs after challenge weakly correlated with antibody responses, whereas protective responses in outbred animals more closely correlated with the T-cell response. The Babraham pig may, therefore, represent a useful model for studying the role of antibodies in protection against the African swine fever virus.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Animais , Imunidade Humoral , Imunização , Suínos , Porco Miniatura
12.
Methods Mol Biol ; 2503: 63-72, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35575886

RESUMO

Primary cultures represent the most reliable method to isolate and propagate field isolates of African swine fever virus (ASFV ). Within the pig ASFV predominantly targets the reticuloendothelial system for replication; therefore, primary macrophage cell cultures are commonly used to isolate, propagate, and study the virus life cycle in the laboratory. In this chapter we will describe methods for the direct isolation of pulmonary alveolar macrophages by lung lavage and the culture of monocyte-derived macrophages from pig blood. We also include a method for the positive selection of CD14+ monocytes as a source for monocyte-derived macrophages from pig blood using microbeads.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Células Cultivadas , Pulmão , Macrófagos , Suínos
13.
Methods Mol Biol ; 2503: 95-104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35575888

RESUMO

Real-time polymerase chain reaction (PCR) for the detection of African swine fever virus (ASFV) is the tool of choice for the diagnostic laboratory and is a robust and easily scalable method for the researcher analyzing viral replication both in vitro and in vivo. In this chapter, we describe protocols for both quantitative real-time polymerase chain reactions (qPCR) and non-quantitative real-time polymerase chain reactions (real-time PCR) for the detection of African swine fever virus genome in a range of samples.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Febre Suína Africana/diagnóstico , Vírus da Febre Suína Africana/genética , Animais , Técnicas de Laboratório Clínico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , Suínos
14.
Methods Mol Biol ; 2503: 179-186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35575895

RESUMO

African swine fever virus is a cytolytic virus that leads to the apoptosis of both cultured cells and primary macrophages. Cell culture supernatants of virus-infected cells are routinely used for virological and immunological studies, despite differences in the biological behavior between such preparations and highly purified virus. In addition, more recent data suggests that exosomes containing viral proteins may be secreted from infected cells. While African swine fever virus can be purified through a number of methods, in our hands Percoll provides the most robust method of separating virus from cellular contaminants.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Linhagem Celular , Células Cultivadas , Vírus de DNA , Suínos , Proteínas Virais
15.
Pathogens ; 11(2)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35215216

RESUMO

African swine fever virus (ASFV) remains a threat to global pig populations. Infections with ASFV lead to a hemorrhagic disease with up to 100% lethality in Eurasian domestic and wild pigs. Although myeloid cells are the main target cells for ASFV, T cell responses are impacted by the infection as well. The complex responses remain not well understood, and, consequently, there is no commercially available vaccine. Here, we review the current knowledge about the induction of antiviral T cell responses by cells of the myeloid lineage, as well as T cell responses in infected animals, recent efforts in vaccine research, and T cell epitopes present in ASFV.

16.
Vet Med Sci ; 8(2): 607-609, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34967133

RESUMO

BACKGROUND: African swine fever (ASF) is a highly contagious and deadly viral disease affecting domestic and wild pigs of all ages. African swine fever virus (ASFV) has spread rapidly through Eastern and Southeastern Asia first appearing in Vietnam in 2019. OBJECTIVES: Molecular typing of African swine fever virus (ASFV) in Vietnam has identified two principal variants circulating based on the sequencing of the intergenic region (IRG) between the I73R and I329L genes. Identification of additional genetic markers would enable higher resolution tracing of outbreaks within the country. METHODS: Sequence analysis suggested the IRG between the A179L and A137R genes may also exhibit variability, PCR primers were designed and samples from Vietnam were subject to Sanger sequencing. RESULTS: We developed a novel method for sub-grouping of ASFV based on the IRG between the A179L and A137R genes of ASFV. Our results demonstrated that the finding of the insertion or deletion of an 11- nucleotide sequence (GATACAATTGT) between the A179L-A137R genes. CONCLUSIONS: The sub-grouping method may provide useful insights into the evolution of genotype II ASFV as well as providing evidence of a relationship between geographically separated outbreaks.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Febre Suína Africana/epidemiologia , Vírus da Febre Suína Africana/genética , Animais , DNA Intergênico/genética , Genótipo , Filogenia , Análise de Sequência de DNA/veterinária , Sus scrofa/genética , Suínos
17.
Viruses ; 13(11)2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34834981

RESUMO

Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) of African swine fever virus (ASFV) is an essential enzyme required for efficient virus replication. Previous crystallography data have indicated that dUTPase (E165R) may serve as a therapeutic target for inhibiting ASFV replication; however, the specificity of the targeting site(s) in ASFV dUTPase remains unclear. In this study, 19 mouse monoclonal antibodies (mAbs) were produced, in which four mAbs showed inhibitory reactivity against E165R recombinant protein. Epitope mapping studies indicated that E165R has three major antigenic regions: 100-120 aa, 120-140 aa, and 140-165 aa. Three mAbs inhibited the dUTPase activity of E165R by binding to the highly conserved 149-RGEGRFGSTG-158 amino acid sequence. Interestingly, 8F6 mAb specifically recognized ASFV dUTPase but not Sus scrofa dUTPase, which may be due to structural differences in the amino acids of F151, R153, and F154 in the motif V region. In summary, we developed anti-E165R-specific mAbs, and identified an important antibody-binding antigenic epitope in the motif V of ASFV dUTPase. Our study provides a comprehensive analysis of mAbs that target the antigenic epitope of ASFV dUTPase, which may contribute to the development of novel antibody-based ASFV therapeutics.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Anticorpos Monoclonais/imunologia , Epitopos/isolamento & purificação , Pirofosfatases/genética , Febre Suína Africana/virologia , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Mapeamento de Epitopos , Epitopos/genética , Proteínas Recombinantes , Suínos , Replicação Viral
18.
J Gen Virol ; 102(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34406116

RESUMO

African swine fever is a devastating disease of domestic swine and wild boar caused by a large double-stranded DNA virus that encodes for more than 150 open reading frames. There is no licensed vaccine for the disease and the most promising current candidates are modified live viruses that have been attenuated by deletion of virulence factors. Like many viruses African swine fever virus significantly alters the host cell machinery to benefit its replication and viral genes that modify host pathways represent promising targets for development of gene deleted vaccines. Autophagy is an important cellular pathway that is involved in cellular homeostasis, innate and adaptive immunity and therefore is manipulated by a number of different viruses. Autophagy is regulated by a complex protein cascade and here we show that African swine fever virus can block formation of autophagosomes, a critical functional step of the autophagy pathway through at least two different mechanisms. Interestingly this does not require the A179L gene that has been shown to interact with Beclin-1, an important autophagy regulator.


Assuntos
Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/virologia , Proteínas Virais/metabolismo , Animais , Autofagia , Chlorocebus aethiops , Suínos , Células Vero , Virulência
19.
Viruses ; 13(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429879

RESUMO

African swine fever virus (ASFV) is a highly contagious pathogen which causes a lethal haemorrhagic fever in domestic pigs and wild boar. The large, double-stranded DNA virus replicates in perinuclear cytoplasmic replication sites known as viral factories. These factories are complex, multi-dimensional structures. Here we investigated the protein and membrane compartments of the factory using super-resolution and electron tomography. Click IT chemistry in combination with stimulated emission depletion (STED) microscopy revealed a reticular network of newly synthesized viral proteins, including the structural proteins p54 and p34, previously seen as a pleomorphic ribbon by confocal microscopy. Electron microscopy and tomography confirmed that this network is an accumulation of membrane assembly intermediates which take several forms. At early time points in the factory formation, these intermediates present as small, individual membrane fragments which appear to grow and link together, in a continuous progression towards new, icosahedral virions. It remains unknown how these membranes form and how they traffic to the factory during virus morphogenesis.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/virologia , Replicação Viral , Vírus da Febre Suína Africana/ultraestrutura , Animais , Técnicas de Cultura de Células , Chlorocebus aethiops , Imunofluorescência , Suínos , Células Vero , Montagem de Vírus
20.
J Vet Diagn Invest ; 32(6): 961-963, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32964810

RESUMO

African swine fever (ASF) is a devastating viral disease of pigs and wild boar, and it threatens global food security. We aimed to identify suitable sample matrices for use in ASF surveillance programs. Six pigs inoculated with ASFV were sampled at postmortem. Blood, bone marrow, ear biopsies, and oral, nasal, and rectal swabs were taken from all pigs. All samples were analyzed using 3 real-time PCR (rtPCR) assays and a LAMP assay. ASFV was detected at > 107 genome copies/mL in blood; bone marrow was found to provide the highest viral load. Ct values provided by the rtPCR assays were correlated, and ASFV was detected in all oral, nasal, and rectal swabs and in all ear biopsy samples irrespective of the location from which they were taken. The LAMP assay had lower sensitivity, and detected ASFV in 54 of 66 positive samples, but delivered positive results within 17 min. We identified additional sample matrices that can be considered depending on the sampling situation: bone marrow had a high probability of detection, which could be useful for decomposed carcasses. However, ear biopsies provide an appropriate, high-throughput sample matrix to detect ASFV and may be useful during surveillance programs.


Assuntos
Febre Suína Africana/diagnóstico , Vigilância da População/métodos , Vírus da Febre Suína Africana/genética , Animais , DNA Viral/genética , Técnicas de Diagnóstico Molecular/normas , Técnicas de Diagnóstico Molecular/veterinária , Técnicas de Amplificação de Ácido Nucleico/normas , Técnicas de Amplificação de Ácido Nucleico/veterinária , Reação em Cadeia da Polimerase em Tempo Real/normas , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Sensibilidade e Especificidade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA