Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(9): 107567, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664619

RESUMO

Infectious viral particles in bioaerosols generated during laparoscopic surgery place staff and patients at significant risk of infection and contributed to the postponement of countless surgical procedures during the COVID-19 pandemic causing excess deaths. The implementation of devices that inactivate viral particles from bioaerosols aid in preventing nosocomial viral spread. We evaluated whether electrostatic precipitation (EP) is effective in capturing and inactivating aerosolized enveloped and non-enveloped viruses. Using a closed-system model mimicking release of bioaerosols during laparoscopic surgery, known concentrations of each virus were aerosolized, exposed to EP and collected for analysis. We demonstrate that both enveloped and non-enveloped viral particles were efficiently captured and inactivated by EP, which was enhanced by increasing the voltage to 10 kV or using two discharge electrodes together at 8 kV. This study highlights EP as an effective means for capturing and inactivating viral particles in bioaerosols, which may enable continued surgical procedures during future pandemics.

2.
Nat Biomed Eng ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749309

RESUMO

The threat of spillovers of coronaviruses associated with the severe acute respiratory syndrome (SARS) from animals to humans necessitates vaccines that offer broader protection from sarbecoviruses. By leveraging a viral-genome-informed computational method for selecting immune-optimized and structurally engineered antigens, here we show that a single antigen based on the receptor binding domain of the spike protein of sarbecoviruses elicits broad humoral responses against SARS-CoV-1, SARS-CoV-2, WIV16 and RaTG13 in mice, rabbits and guinea pigs. When administered as a DNA immunogen or by a vector based on a modified vaccinia virus Ankara, the optimized antigen induced vaccine protection from the Delta variant of SARS-CoV-2 in mice genetically engineered to express angiotensin-converting enzyme 2 and primed by a viral-vector vaccine (AZD1222) against SARS-CoV-2. A vaccine formulation incorporating mRNA coding for the optimized antigen further validated its broad immunogenicity. Vaccines that elicit broad immune responses across subgroups of coronaviruses may counteract the threat of zoonotic spillovers of betacoronaviruses.

3.
Viruses ; 15(6)2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37376569

RESUMO

The complement system is a key component of the innate immune response to viruses and proinflammatory events. Exaggerated complement activation has been attributed to the induction of a cytokine storm in severe SARS-CoV-2 infection. However, there is also an argument for the protective role of complement proteins, given their local synthesis or activation at the site of viral infection. This study investigated the complement activation-independent role of C1q and C4b-binding protein (C4BP) against SARS-CoV-2 infection. The interactions of C1q, its recombinant globular heads, and C4BP with the SARS-CoV-2 spike and receptor binding domain (RBD) were examined using direct ELISA. In addition, RT-qPCR was used to evaluate the modulatory effect of these complement proteins on the SARS-CoV-2-mediated immune response. Cell binding and luciferase-based viral entry assays were utilised to assess the effects of C1q, its recombinant globular heads, and C4BP on SARS-CoV-2 cell entry. C1q and C4BP bound directly to SARS-CoV-2 pseudotype particles via the RBD domain of the spike protein. C1q via its globular heads and C4BP were found to reduce binding as well as viral transduction of SARS-CoV-2 spike protein expressing lentiviral pseudotypes into transfected A549 cells expressing human ACE2 and TMPRSS2. Furthermore, the treatment of the SARS-CoV-2 spike, envelope, nucleoprotein, and membrane protein expressing alphaviral pseudotypes with C1q, its recombinant globular heads, or C4BP triggered a reduction in mRNA levels of proinflammatory cytokines and chemokines such as IL-1ß, IL-8, IL-6, TNF-α, IFN-α, and RANTES (as well as NF-κB) in A549 cells expressing human ACE2 and TMPRSS2. In addition, C1q and C4BP treatment also reduced SARS-CoV-2 pseudotype infection-mediated NF-κB activation in A549 cells expressing human ACE2 and TMPRSS2. C1q and C4BP are synthesised primarily by hepatocytes; however, they are also produced by macrophages, and alveolar type II cells, respectively, locally at the pulmonary site. These findings support the notion that the locally produced C1q and C4BP can be protective against SARS-CoV-2 infection in a complement activation-independent manner, offering immune resistance by inhibiting virus binding to target host cells and attenuating the infection-associated inflammatory response.


Assuntos
COVID-19 , Proteína de Ligação ao Complemento C4b , Humanos , Proteína de Ligação ao Complemento C4b/química , Proteína de Ligação ao Complemento C4b/metabolismo , Complemento C1q/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , NF-kappa B/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Ativação do Complemento , Proteínas do Sistema Complemento/metabolismo , Ligação Proteica
4.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36724296

RESUMO

AIMS: Filoviruses encompass highly pathogenic viruses placing significant public health burden on countries affected. Efforts for improved diagnostics and surveillance are needed. The requirement for high-containment can be circumvented by using pseudotype viruses (PV), which can be handled safely, in tropism, drug screening, vaccine evaluation, and serosurveillance studies. We assessed the stability and functionality after long-term storage of lyophilised filovirus pseudotypes for use in neutralisation assays. METHODS AND RESULTS: We generated a panel of filovirus lentiviral pseudotypes followed by lyophilisation and storage in different conditions. Next, we reconstituted and tested PVs in infection experiments and pseudotype neutralisation assays where possible. Lyophilised Ebola and Marburg PVs retained production titres for at least two years when stored at +4˚C or less. Lyophilised Ebola PVs performed similarly to non-lyophilised PVs in neutralisation assays after reconstitution. When stored at high temperatures (+37˚C), lyophilised PVs did not retain titres after 1-month storage, however, when lyophilised using pilot-scale facilities EBOV PVs retained titres and performed as standard in neutralisation assays after on 1-month storage at 37˚C. CONCLUSIONS: Filovirus PVs are amenable to lyophilisation and can be stored for at least 2 years in a household fridge to be used in antibody assays. Lyophilisation performed in the right conditions would allow transportation at room temperature, even in warmer climates.


Assuntos
Ebolavirus , Filoviridae , Doença pelo Vírus Ebola , Vírus , Humanos , Testes de Neutralização/métodos , Doença pelo Vírus Ebola/prevenção & controle , Anticorpos Antivirais
5.
Front Immunol ; 13: 960733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967323

RESUMO

Lung surfactant protein D (SP-D) and Dendritic cell-specific intercellular adhesion molecules-3 grabbing non-integrin (DC-SIGN) are pathogen recognising C-type lectin receptors. SP-D has a crucial immune function in detecting and clearing pulmonary pathogens; DC-SIGN is involved in facilitating dendritic cell interaction with naïve T cells to mount an anti-viral immune response. SP-D and DC-SIGN have been shown to interact with various viruses, including SARS-CoV-2, an enveloped RNA virus that causes COVID-19. A recombinant fragment of human SP-D (rfhSP-D) comprising of α-helical neck region, carbohydrate recognition domain, and eight N-terminal Gly-X-Y repeats has been shown to bind SARS-CoV-2 Spike protein and inhibit SARS-CoV-2 replication by preventing viral entry in Vero cells and HEK293T cells expressing ACE2. DC-SIGN has also been shown to act as a cell surface receptor for SARS-CoV-2 independent of ACE2. Since rfhSP-D is known to interact with SARS-CoV-2 Spike protein and DC-SIGN, this study was aimed at investigating the potential of rfhSP-D in modulating SARS-CoV-2 infection. Coincubation of rfhSP-D with Spike protein improved the Spike Protein: DC-SIGN interaction. Molecular dynamic studies revealed that rfhSP-D stabilised the interaction between DC-SIGN and Spike protein. Cell binding analysis with DC-SIGN expressing HEK 293T and THP- 1 cells and rfhSP-D treated SARS-CoV-2 Spike pseudotypes confirmed the increased binding. Furthermore, infection assays using the pseudotypes revealed their increased uptake by DC-SIGN expressing cells. The immunomodulatory effect of rfhSP-D on the DC-SIGN: Spike protein interaction on DC-SIGN expressing epithelial and macrophage-like cell lines was also assessed by measuring the mRNA expression of cytokines and chemokines. RT-qPCR analysis showed that rfhSP-D treatment downregulated the mRNA expression levels of pro-inflammatory cytokines and chemokines such as TNF-α, IFN-α, IL-1ß, IL- 6, IL-8, and RANTES (as well as NF-κB) in DC-SIGN expressing cells challenged by Spike protein. Furthermore, rfhSP-D treatment was found to downregulate the mRNA levels of MHC class II in DC expressing THP-1 when compared to the untreated controls. We conclude that rfhSP-D helps stabilise the interaction between SARS- CoV-2 Spike protein and DC-SIGN and increases viral uptake by macrophages via DC-SIGN, suggesting an additional role for rfhSP-D in SARS-CoV-2 infection.


Assuntos
COVID-19 , Proteína D Associada a Surfactante Pulmonar , Enzima de Conversão de Angiotensina 2 , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Quimiocinas , Chlorocebus aethiops , Citocinas , Células HEK293 , Humanos , Inflamação , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Proteína D Associada a Surfactante Pulmonar/genética , RNA Mensageiro , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Células Vero
6.
Animals (Basel) ; 11(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34827902

RESUMO

Peste des petits ruminants (PPR) is a highly contagious viral disease of small ruminants caused by PPR virus (PPRV). PPR is endemic in Asia, the Middle East and across large areas of Africa and is currently targeted for global eradication by 2030. The virus exists as four different lineages that are usually limited to specific geographical areas. However, recent reports of spread of PPRV, in particular of lineage IV viruses to infection-free countries and previously PPR endemic areas are noteworthy. A rapid and accurate laboratory diagnosis and reports on its epidemiological linkage for virus spread play a major role in the effective control and eradication of the disease. Currently, molecular assays, including conventional reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-PCR (RT-qPCR) are usually used for diagnosis of PPR while the sequencing of part of the nucleocapsid gene is usually carried out for the viral lineage identification. However, it is difficult to diagnose and sequence the genetic material if the animal excreted a low level of virus at the initial stage of infection or if the PPRV is degraded during the long-distance transportation of samples to the reference laboratories. This study describes the development of a novel nested RT-PCR assay for the detection of the PPRV nucleic acid by targeting the N-protein gene, compares the performance of the assay with the existing conventional RT-PCR and also provides good-quality DNA suitable for sequencing in order to identify circulating lineages. The assay was evaluated using cell culture propagated PPRVs, field samples from clinically infected animals and samples from experimentally infected animals encompassing all four lineages (I-IV) of PPRV. This assay provides a solution with an easy, accurate, rapid and cost-effective PPR diagnostic and partial genome sequencing for use in resource-limited settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA