Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 14(1): 364, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087380

RESUMO

BACKGROUND: Human mesenchymal stem cells (hMSCs) utilize discrete biosynthetic pathways to self-renew and differentiate into specific cell lineages, with undifferentiated hMSCs harbouring reliance on glycolysis and hMSCs differentiating towards an osteogenic phenotype relying on oxidative phosphorylation as an energy source. METHODS: In this study, the osteogenic differentiation of hMSCs was assessed and classified over 14 days using a non-invasive live-cell imaging modality-two-photon fluorescence lifetime imaging microscopy (2P-FLIM). This technique images and measures NADH fluorescence from which cellular metabolism is inferred. RESULTS: During osteogenesis, we observe a higher dependence on oxidative phosphorylation (OxPhos) for cellular energy, concomitant with an increased reliance on anabolic pathways. Guided by these non-invasive observations, we validated this metabolic profile using qPCR and extracellular metabolite analysis and observed a higher reliance on glutaminolysis in the earlier time points of osteogenic differentiation. Based on the results obtained, we sought to promote glutaminolysis further by using lactate, to improve the osteogenic potential of hMSCs. Higher levels of mineral deposition and osteogenic gene expression were achieved when treating hMSCs with lactate, in addition to an upregulation of lactate metabolism and transmembrane cellular lactate transporters. To further clarify the interplay between glutaminolysis and lactate metabolism in osteogenic differentiation, we blocked these pathways using BPTES and α-CHC respectively. A reduction in mineralization was found after treatment with BPTES and α-CHC, demonstrating the reliance of hMSC osteogenesis on glutaminolysis and lactate metabolism. CONCLUSION: In summary, we demonstrate that the osteogenic differentiation of hMSCs has a temporal metabolic profile and shift that is observed as early as day 3 of cell culture using 2P-FLIM. Furthermore, extracellular lactate is shown as an essential metabolite and metabolic fuel to ensure efficient osteogenic differentiation and as a signalling molecule to promote glutaminolysis. These findings have significant impact in the use of 2P-FLIM to discover potent approaches towards bone tissue engineering in vitro and in vivo by engaging directly with metabolite-driven osteogenesis.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Osteogênese/genética , Ácido Láctico/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular/fisiologia , Osso e Ossos , Células Cultivadas
2.
Comput Struct Biotechnol J ; 21: 4009-4020, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649712

RESUMO

Inflammatory arthritis, including rheumatoid (RA), and psoriatic (PsA) arthritis, are clinically and immunologically heterogeneous diseases with no identified cure. Chronic inflammation of the synovial tissue ushers loss of function of the joint that severely impacts the patient's quality of life, eventually leading to disability and life-threatening comorbidities. The pathogenesis of synovial inflammation is the consequence of compounded immune and stromal cell interactions influenced by genetic and environmental factors. Deciphering the complexity of the synovial cellular landscape has accelerated primarily due to the utilisation of bulk and single cell RNA sequencing. Particularly the capacity to generate cell-cell interaction networks could reveal evidence of previously unappreciated processes leading to disease. However, there is currently a lack of universal nomenclature as a result of varied experimental and technological approaches that discombobulates the study of synovial inflammation. While spatial transcriptomic analysis that combines anatomical information with transcriptomic data of synovial tissue biopsies promises to provide more insights into disease pathogenesis, in vitro functional assays with single-cell resolution will be required to validate current bioinformatic applications. In order to provide a comprehensive approach and translate experimental data to clinical practice, a combination of clinical and molecular data with machine learning has the potential to enhance patient stratification and identify individuals at risk of arthritis that would benefit from early therapeutic intervention. This review aims to provide a comprehensive understanding of the effect of computational approaches in deciphering synovial inflammation pathogenesis and discuss the impact that further experimental and novel computational tools may have on therapeutic target identification and drug development.

3.
J Biomech ; 154: 111590, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37163962

RESUMO

Mechanical stimulation can modulate the chondrogenic differentiation of stem/progenitor cells and potentially benefit tissue engineering (TE) of functional articular cartilage (AC). Mechanical cues like hydrostatic pressure (HP) are often applied to cell-laden scaffolds, with little optimization of other key parameters (e.g. cell density, biomaterial properties) known to effect lineage commitment. In this study, we first sought to establish cell seeding densities and fibrin concentrations supportive of robust chondrogenesis of human mesenchymal stem cells (hMSCs). High cell densities (15*106 cells/ml) were more supportive of sGAG deposition on a per cell basis, while collagen deposition was higher at lower seeding densities (5*106 cells/ml). Employment of lower fibrin (2.5 %) concentration hydrogels supported more robust chondrogenesis of hMSCs, with higher collagen type II and lower collagen type X deposition compared to 5 % hydrogels. The application of HP to hMSCs maintained in identified chondro-inductive culture conditions had little effect on overall levels of cartilage-specific matrix production. However, if hMSCs were first temporally primed with TGF-ß3 before its withdrawal, they responded to HP by increased sGAG production. The response to HP in higher cell density cultures was also associated with a metabolic shift towards glycolysis, which has been linked with a mature chondrocyte-like phenotype. These results suggest that mechanical stimulation may not be necessary to engineer functional AC grafts using hMSCs if other culture conditions have been optimised. However, such bioreactor systems can potentially be employed to better understand how engineered tissues respond to mechanical loading in vivo once removed from in vitro culture environments.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Humanos , Condrogênese/fisiologia , Pressão Hidrostática , Engenharia Tecidual/métodos , Diferenciação Celular , Hidrogéis , Fibrina , Células Cultivadas
4.
Acta Biomater ; 160: 311-321, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36754270

RESUMO

Since the recent observation that immune cells undergo metabolic reprogramming upon activation, there has been immense research in this area to not only understand the basis of such changes, but also to exploit metabolic rewiring for therapeutic benefit. In a resting state, macrophages preferentially utilise oxidative phosphorylation to generate energy; however, in the presence of immune cell activators, glycolytic genes are upregulated, and energy is generated through glycolysis. This facilitates the rapid production of biosynthetic intermediates and a pro-inflammatory macrophage phenotype. While this is essential to mount responses to infectious agents, more evidence is accumulating linking dysregulated metabolism to inappropriate immune responses. Given that certain biomaterials are known to promote an inflammatory macrophage phenotype, this prompted us to investigate if biomaterial particulates can impact on macrophage metabolism. Using micron and nano sized hydroxyapatite (HA), we demonstrate for the first time that these biomaterials can indeed drive changes in metabolism, and that this occurs in a size-dependent manner. We show that micronHA, but not nanoHA, particles upregulate surrogate markets of glycolysis including the glucose transporter (GLUT1), hexokinase 2 (HK2), GAPDH, and PKM2. Furthermore, we demonstrate that micronHA alters mitochondrial morphology and promotes a bioenergetic shift to favour glycolysis. Finally, we demonstrate that glycolytic gene expression is dependent on particle uptake and that targeting glycolysis attenuates the pro-inflammatory profile of micronHA-treated macrophages. These results not only further our understanding of biomaterial-based macrophage activation, but also implicate immunometabolism as a new area for consideration in intelligent biomaterial design and therapeutic targeting. STATEMENT OF SIGNIFICANCE: Several recent studies have reported that immune cell activation occurs concurrently with metabolic reprogramming. Furthermore, metabolic reprogramming of innate immune cells plays a prominent role in determining cellular phenotype and function. In this study we demonstrate that hydroxyapatite particle size alters macrophage metabolism, in turn driving their functional phenotype. Specifically, the pro-inflammatory phenotype promoted by micron-sized HA-particles is accompanied by changes in mitochondrial dynamics and a bioenergetic shift favouring glycolysis. This effect is not seen with nano-HA particles and can be attenuated upon inhibition of glycolysis. This study therefore not only identifies immunometabolism as a useful tool for characterising the immune response to biomaterials, but also highlights immunometabolism as a targetable aspect of the host response for therapeutic benefit.


Assuntos
Durapatita , Macrófagos , Durapatita/farmacologia , Tamanho da Partícula , Macrófagos/metabolismo , Materiais Biocompatíveis/farmacologia , Metaboloma , Ativação de Macrófagos
5.
Biochem Biophys Rep ; 33: 101391, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36504704

RESUMO

Background: Thoroughbred racehorse performance is largely influenced by a major quantitative trait locus at the myostatin (MSTN) gene which determines aptitude for certain race distances due to a promoter region insertion mutation influencing functional phenotypes in skeletal muscle. To develop an in vitro system for functional experiments we established three novel equine skeletal muscle cell lines reflecting the variation in phenotype associated with MSTN genotype (CC/II, CT/IN and TT/NN for SNP g.66493737C > T/SINE insertion 227 bp polymorphism). Primary equine skeletal muscle myoblasts, isolated from Thoroughbred horse gluteus medius, were conditionally immortalised and evaluated to determine whether cell phenotype and metabolic function were comparable to functional characteristics previously reported for ex vivo skeletal muscle isolated from Thoroughbred horses with each genotype. Results: Primary myoblasts conditionally immortalised with the temperature sensitive SV40TtsA58 lentivirus vector successfully proliferated and could revert to their primary cell phenotype and differentiate into multinucleated myotubes. Skeletal muscle fibre type, MSTN gene expression, mitochondrial abundance, and mitochondrial function of the three MSTN genotype cell lines, were consistent with equivalent characterisation of ex vivo skeletal muscle samples with these genotypes. Furthermore, addition of coenzyme Q10 (CoQ10) to the cell lines improved mitochondrial function, an observation consistent with ex vivo skeletal muscle samples with these genotypes following supplementation with CoQ10 in the diet. Conclusions: The observation that the phenotypic characteristics and metabolic function of the cells lines are equivalent to ex vivo skeletal muscle indicates that this in vitro system will enable efficient and cost-effective analyses of equine skeletal muscle for a range of different applications including understanding metabolic function, testing of nutritional supplements, drug test development and gene doping test development. In the multi-billion-euro international Thoroughbred horse industry research advances in the biological function of skeletal muscle are likely to have considerable impact. Furthermore, this novel genotype-specific system may be adapted and applied to human biomedicine to improve understanding of the effects of myostatin in human physiology and medicine.

6.
Elife ; 112022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36254592

RESUMO

In this study, we utilise fluorescence lifetime imaging of NAD(P)H-based cellular autofluorescence as a non-invasive modality to classify two contrasting states of human macrophages by proxy of their governing metabolic state. Macrophages derived from human blood-circulating monocytes were polarised using established protocols and metabolically challenged using small molecules to validate their responding metabolic actions in extracellular acidification and oxygen consumption. Large field-of-view images of individual polarised macrophages were obtained using fluorescence lifetime imaging microscopy (FLIM). These were challenged in real time with small-molecule perturbations of metabolism during imaging. We uncovered FLIM parameters that are pronounced under the action of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), which strongly stratifies the phenotype of polarised human macrophages; however, this performance is impacted by donor variability when analysing the data at a single-cell level. The stratification and parameters emanating from a full field-of-view and single-cell FLIM approach serve as the basis for machine learning models. Applying a random forests model, we identify three strongly governing FLIM parameters, achieving an area under the receiver operating characteristics curve (ROC-AUC) value of 0.944 and out-of-bag (OBB) error rate of 16.67% when classifying human macrophages in a full field-of-view image. To conclude, 2P-FLIM with the integration of machine learning models is showed to be a powerful technique for analysis of both human macrophage metabolism and polarisation at full FoV and single-cell level.


Assuntos
Macrófagos , NAD , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona , Humanos , Aprendizado de Máquina , Macrófagos/metabolismo , Microscopia de Fluorescência/métodos , NAD/metabolismo
7.
Sci Rep ; 12(1): 16269, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175453

RESUMO

Malignant melanoma is among the tumor entities with the highest increase of incidence worldwide. To elucidate melanoma progression and develop new effective therapies, rodent models are commonly used. While these do not adequately reflect human physiology, two-dimensional cell cultures lack crucial elements of the tumor microenvironment. To address this shortcoming, we have developed a melanoma skin equivalent based on an open-source epidermal model. Melanoma cell lines with different driver mutations were incorporated into these models forming distinguishable tumor aggregates within a stratified epidermis. Although barrier properties of the skin equivalents were not affected by incorporation of melanoma cells, their presence resulted in a higher metabolic activity indicated by an increased glucose consumption. Furthermore, we re-isolated single cells from the models to characterize the proliferation state within the respective model. The applicability of our model for tumor therapeutics was demonstrated by treatment with a commonly used v-raf murine sarcoma viral oncogene homolog B (BRAF) inhibitor vemurafenib. This selective BRAF inhibitor successfully reduced tumor growth in the models harboring BRAF-mutated melanoma cells. Hence, our model is a promising tool to investigate melanoma development and as a preclinical model for drug discovery.


Assuntos
Melanoma , Neoplasias Cutâneas , Animais , Epiderme , Glucose , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Camundongos , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Microambiente Tumoral , Vemurafenib/farmacologia , Melanoma Maligno Cutâneo
8.
Atherosclerosis ; 352: 35-45, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35667162

RESUMO

BACKGROUND AND AIMS: Metabolic reprogramming of innate immune cells is emerging as a key player in the progression of a number of chronic diseases, including atherosclerosis, where high rates of glycolysis correlate with plaque instability. This study aimed to investigate if cholesterol crystals, which are key atherosclerosis-associated DAMPs (damage/danger-associated molecular patterns), alter immune cell metabolism and whether this, in turn, impacts on macrophage phenotype and function. METHODS AND RESULTS: Primary human macrophages were treated with cholesterol crystals and expression of M1 (CXCL9, CXCL10) and M2-associated (MRC1, CCL13) macrophage markers, alarmins, and inflammatory cytokines were assessed either by real-time PCR or ELISA. Cholesterol crystal-induced changes in glycolytic markers were determined using real-time PCR and western blotting, while changes in cellular respiration and mitochondrial dynamics were examined via Seahorse analysis, Fluorescence Lifetime Imaging Microscopy (FLIM) and confocal microscopy. Treatment of macrophages with cholesterol crystals upregulated mRNA levels of CXCL9 and CXCL10, while concomitantly downregulating expression of MRC1 and CCL13. Cholesterol crystal--treated macrophages also exhibited a significant shift in metabolism to favour glycolysis, accompanied by the expression of key glycolytic markers GLUT1, Hexokinase 2, HIF1α, GAPDH and PFKFB3. Furthermore, we show that these effects are mediated upstream by the glycolytic enzyme, PKM2, and that direct inhibition of glycolysis or PKM2 nuclear localisation leads to a significant reduction in cholesterol crystal-induced inflammatory readouts. CONCLUSIONS: This study not only provides further insight into how atherosclerosis-associated DAMPs impact on immune cell function, but also highlights metabolic reprogramming as a potential therapeutic target for cholesterol crystal-related inflammation.


Assuntos
Aterosclerose , Ativação de Macrófagos , Aterosclerose/metabolismo , Colesterol/metabolismo , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo
9.
Ann Rheum Dis ; 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701153

RESUMO

OBJECTIVES: Immune and stromal cell communication is central in the pathogenesis of rheumatoid arthritis (RA) and psoriatic arthritis (PsA), however, the nature of these interactions in the synovial pathology of the two pathotypes can differ. Identifying immune-stromal cell crosstalk at the site of inflammation in RA and PsA is challenging. This study creates the first global transcriptomic analysis of the RA and PsA inflamed joint and investigates immune-stromal cell interactions in the pathogenesis of synovial inflammation. METHODS: Single cell transcriptomic profiling of 178 000 synovial tissue cells from five patients with PsA and four patients with RA, importantly, without prior sorting of immune and stromal cells. This approach enabled the transcriptomic analysis of the intact synovial tissue and identification of immune and stromal cell interactions. State of the art data integration and annotation techniques identified and characterised 18 stromal and 14 immune cell clusters. RESULTS: Global transcriptomic analysis of synovial cell subsets identifies actively proliferating synovial T cells and indicates that due to differential λ and κ immunoglobulin light chain usage, synovial plasma cells are potentially not derived from the local memory B cell pool. Importantly, we report distinct fibroblast and endothelial cell transcriptomes indicating abundant subpopulations in RA and PsA characterised by differential transcription factor usage. Using receptor-ligand interactions and downstream target characterisation, we identify RA-specific synovial T cell-derived transforming growth factor (TGF)-ß and macrophage interleukin (IL)-1ß synergy in driving the transcriptional profile of FAPα+THY1+ invasive synovial fibroblasts, expanded in RA compared with PsA. In vitro characterisation of patient with RA synovial fibroblasts showed metabolic switch to glycolysis, increased adhesion intercellular adhesion molecules 1 expression and IL-6 secretion in response to combined TGF-ß and IL-1ß treatment. Disrupting specific immune and stromal cell interactions offers novel opportunities for targeted therapeutic intervention in RA and PsA.

10.
Front Med (Lausanne) ; 9: 830998, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372383

RESUMO

Inflammatory arthritis is a chronic systemic autoimmune disease of unknown etiology, which affects the joints. If untreated, these diseases can have a detrimental effect on the patient's quality of life, leading to disabilities, and therefore, exhibit a significant socioeconomic impact and burden. While studies of immune cell populations in arthritis patient's peripheral blood have been informative regarding potential immune cell dysfunction and possible patient stratification, there are considerable limitations in identifying the early events that lead to synovial inflammation. The joint, as the site of inflammation and the local microenvironment, exhibit unique characteristics that contribute to disease pathogenesis. Understanding the contribution of immune and stromal cell interactions within the inflamed joint has been met with several technical challenges. Additionally, the limited availability of synovial tissue biopsies is a key incentive for the utilization of high-throughput techniques in order to maximize information gain. This review aims to provide an overview of key methods and novel techniques that are used in the handling, processing and analysis of synovial tissue biopsies and the potential synergy between these techniques. Herein, we describe the utilization of high dimensionality flow cytometric analysis, single cell RNA sequencing, ex vivo functional assays and non-intrusive metabolic characterization of synovial cells on a single cell level based on fluorescent lifetime imaging microscopy. Additionally, we recommend important points of consideration regarding the effect of different storage and handling techniques on downstream analysis of synovial tissue samples. The introduction of new powerful techniques in the study of synovial tissue inflammation, brings new challenges but importantly, significant opportunities. Implementation of novel approaches will accelerate our path toward understanding of the mechanisms involved in the pathogenesis of inflammatory arthritis and lead to the identification of new avenues of therapeutic intervention.

11.
Antioxidants (Basel) ; 11(1)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35052669

RESUMO

The extracellular parasite and causative agent of African sleeping sickness Trypanosoma brucei (T. brucei) has evolved a number of strategies to avoid immune detection in the host. One recently described mechanism involves the conversion of host-derived amino acids to aromatic ketoacids, which are detected at relatively high concentrations in the bloodstream of infected individuals. These ketoacids have been shown to directly suppress inflammatory responses in murine immune cells, as well as acting as potent inducers of the stress response enzyme, heme oxygenase 1 (HO-1), which has proven anti-inflammatory properties. The aim of this study was to investigate the immunomodulatory properties of the T. brucei-derived ketoacids in primary human immune cells and further examine their potential as a therapy for inflammatory diseases. We report that the T. brucei-derived ketoacids, indole pyruvate (IP) and hydroxyphenylpyruvate (HPP), induce HO-1 expression through Nrf2 activation in human dendritic cells (DC). They also limit DC maturation and suppress the production of pro-inflammatory cytokines, which, in turn, leads to a reduced capacity to differentiate adaptive CD4+ T cells. Furthermore, the ketoacids are capable of modulating DC cellular metabolism and suppressing the inflammatory profile of cells isolated from patients with inflammatory bowel disease. This study therefore not only provides further evidence of the immune-evasion mechanisms employed by T. brucei, but also supports further exploration of this new class of HO-1 inducers as potential therapeutics for the treatment of inflammatory conditions.

12.
Ann Rheum Dis ; 81(2): 193-205, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34598926

RESUMO

OBJECTIVES: This study investigates pathogenic and protective polyfunctional T-cell responses in patient with rheumatoid arthritis (RA), individuals at risk (IAR) and healthy control (HC) synovial-tissue biopsies and identifies the presence of a novel population of pathogenic polyfunctional T-cells that are enriched in the RA joint prior to the development of clinical inflammation. METHODS: Pathway enrichment analysis of previously obtained RNAseq data of synovial biopsies from RA (n=118), IAR (n=20) and HC (n=44) was performed. Single-cell synovial tissue suspensions from RA (n=10), IAR (n=7) and HC (n=7) and paired peripheral blood mononuclear cells (PBMC) were stimulated in vitro and polyfunctional synovial T-cell subsets examined by flow cytometric analysis, simplified presentation of incredibly complex evaluations (SPICE) and FlowSom clustering. Flow-imaging was utilised to confirm specific T-cell cluster identification. Fluorescent lifetime imaging microscopy (FLIM) was used to visualise metabolic status of sorted T-cell populations. RESULTS: Increased plasticity of Tfh cells and CD4 T-cell polyfunctionality with enriched memory Treg cell responses was demonstrated in RA patient synovial tissue. Synovial-tissue RNAseq analysis reveals that enrichment in T-cell activation and differentiation pathways pre-dates the onset of RA. Switch from potentially protective IL-4 and granulocyte macrophage colony stimulating factor (GMCSF) dominated polyfunctional CD4 T-cell responses towards pathogenic polyfunctionality is evident in patient with IAR and RA synovial tissue. Cluster analysis reveals the accumulation of highly polyfunctional CD4+ CD8dim T-cells in IAR and RA but not HC synovial tissue. CD4+ CD8dim T-cells show increased utilisation of oxidative phosphorylation, a characteristic of metabolically primed memory T-cells. Frequency of synovial CD4+ CD8dim T-cells correlates with RA disease activity. CONCLUSION: Switch from potentially protective to pathogenic T-cell polyfunctionality pre-dates the onset of clinical inflammation and constitutes an opportunity for therapeutic intervention in RA.


Assuntos
Artrite Reumatoide/imunologia , Membrana Sinovial/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sintomas Prodrômicos
13.
Lab Chip ; 21(7): 1395-1408, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33605282

RESUMO

The stem cell niche at the perivascular space in human tissue plays a pivotal role in dictating the overall fate of stem cells within it. Mesenchymal stem cells (MSCs) in particular, experience influential microenvironmental conditions, which induce specific metabolic profiles that affect processes of cell differentiation and dysregulation of the immunomodulatory function. Reports focusing specifically on the metabolic status of MSCs under the effect of pathophysiological stimuli - in terms of flow velocities, shear stresses or oxygen tension - do not model heterogeneous gradients, highlighting the need for more advanced models reproducing the metabolic niche. Organ-on-a-chip technology offers the most advanced tools for stem cell niche modelling thus allowing for controlled dynamic culture conditions while profiling tuneable oxygen tension gradients. However, current systems for live cell detection of metabolic activity inside microfluidic devices require the integration of microsensors. The presence of such microsensors poses the potential to alter microfluidics and their resolution does not enable intracellular measurements but rather a global representation concerning cellular metabolism. Here, we present a metabolic toolbox coupling a miniaturised in vitro system for human-MSCs dynamic culture, which mimics microenvironmental conditions of the perivascular niche, with high-resolution imaging of cell metabolism. Using fluorescence lifetime imaging microscopy (FLIM) we monitor the spatial metabolic machinery and correlate it with experimentally validated intracellular oxygen concentration after designing the oxygen tension decay along the fluidic chamber by in silico models prediction. Our platform allows the metabolic regulation of MSCs, mimicking the physiological niche in space and time, and its real-time monitoring representing a functional tool for modelling perivascular niches, relevant diseases and metabolic-related uptake of pharmaceuticals.


Assuntos
Células-Tronco Mesenquimais , Diferenciação Celular , Humanos , Dispositivos Lab-On-A-Chip , Nicho de Células-Tronco , Células-Tronco
14.
JCI Insight ; 5(21)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33148884

RESUMO

While autoantibodies are used in the diagnosis of rheumatoid arthritis (RA), the function of B cells in the inflamed joint remains elusive. Extensive flow cytometric characterization and SPICE algorithm analyses of single-cell synovial tissue from patients with RA revealed the accumulation of switched and double-negative memory programmed death-1 receptor-expressing (PD-1-expressing) B cells at the site of inflammation. Accumulation of memory B cells was mediated by CXCR3, evident by the observed increase in CXCR3-expressing synovial B cells compared with the periphery, differential regulation by key synovial cytokines, and restricted B cell invasion demonstrated in response to CXCR3 blockade. Notably, under 3% O2 hypoxic conditions that mimic the joint microenvironment, RA B cells maintained marked expression of MMP-9, TNF, and IL-6, with PD-1+ B cells demonstrating higher expression of CXCR3, CD80, CD86, IL-1ß, and GM-CSF than their PD-1- counterparts. Finally, following functional analysis and flow cell sorting of RA PD-1+ versus PD-1- B cells, we demonstrate, using RNA-Seq and emerging fluorescence lifetime imaging microscopy of cellular NAD, a significant shift in metabolism of RA PD-1+ B cells toward glycolysis, associated with an increased transcriptional signature of key cytokines and chemokines that are strongly implicated in RA pathogenesis. Our data support the targeting of pathogenic PD-1+ B cells in RA as a focused, novel therapeutic option.


Assuntos
Artrite Reumatoide/patologia , Linfócitos B/imunologia , Glicólise , Hipóxia/fisiopatologia , Inflamação/patologia , Receptor de Morte Celular Programada 1/imunologia , Membrana Sinovial/imunologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Linfócitos B/metabolismo , Estudos de Casos e Controles , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores CXCR3 , Membrana Sinovial/metabolismo
15.
Life Sci Alliance ; 3(5)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32312889

RESUMO

Retinal degeneration is the leading cause of incurable blindness worldwide and is characterised by progressive loss of light-sensing photoreceptors in the neural retina. SARM1 is known for its role in axonal degeneration, but a role for SARM1 in photoreceptor cell degeneration has not been reported. SARM1 is known to mediate neuronal cell degeneration through depletion of essential metabolite NAD and induction of energy crisis. Here, we demonstrate that SARM1 is expressed in photoreceptors, and using retinal tissue explant, we confirm that activation of SARM1 causes destruction of NAD pools in the photoreceptor layer. Through generation of rho -/- sarm1 -/- double knockout mice, we demonstrate that genetic deletion of SARM1 promotes both rod and cone photoreceptor cell survival in the rhodopsin knockout (rho -/- ) mouse model of photoreceptor degeneration. Finally, we demonstrate that SARM1 deficiency preserves cone visual function in the surviving photoreceptors when assayed by electroretinography. Overall, our data indicate that endogenous SARM1 has the capacity to consume NAD in photoreceptor cells and identifies a previously unappreciated role for SARM1-dependent cell death in photoreceptor cell degeneration.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células Fotorreceptoras/metabolismo , Degeneração Retiniana/genética , Animais , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/fisiologia , Modelos Animais de Doenças , Eletrorretinografia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD/metabolismo , Células Fotorreceptoras/fisiologia , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/metabolismo , Rodopsina/metabolismo , Visão Ocular
16.
Redox Biol ; 30: 101420, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31935648

RESUMO

Stem cells and the niche in which they reside feature a complex microenvironment with tightly regulated homeostasis, cell-cell interactions and dynamic regulation of metabolism. A significant number of organoid models has been described over the last decade, yet few methodologies can enable single cell level resolution analysis of the stem cell niche metabolic demands, in real-time and without perturbing integrity. Here, we studied the redox metabolism of Lgr5-GFP intestinal organoids by two emerging microscopy approaches based on luminescence lifetime measurement - fluorescence-based FLIM for NAD(P)H, and phosphorescence-based PLIM for real-time oxygenation. We found that exposure of stem (Lgr5-GFP) and differentiated (no GFP) cells to high and low glucose concentrations resulted in measurable shifts in oxygenation and redox status. NAD(P)H-FLIM and O2-PLIM both indicated that at high 'basal' glucose conditions, Lgr5-GFP cells had lower activity of oxidative phosphorylation when compared with cells lacking Lgr5. However, when exposed to low (0.5 mM) glucose, stem cells utilized oxidative metabolism more dynamically than non-stem cells. The high heterogeneity of complex 3D architecture and energy production pathways of Lgr5-GFP organoids were also confirmed by the extracellular flux (XF) analysis. Our data reveals that combined analysis of NAD(P)H-FLIM and organoid oxygenation by PLIM represents promising approach for studying stem cell niche metabolism in a live readout.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Mucosa Intestinal/citologia , Organoides/citologia , Receptores Acoplados a Proteínas G/genética , Animais , Comunicação Celular , Glucose/farmacologia , Proteínas de Fluorescência Verde/genética , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Análise do Fluxo Metabólico , Camundongos , Microscopia de Fluorescência , Técnicas de Cultura de Órgãos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Fosforilação Oxidativa , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/metabolismo , Nicho de Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
17.
Langmuir ; 33(31): 7680-7691, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28697597

RESUMO

A strategy assisted by an inorganic template was developed to promote the organized self-assembly of meso-(tetrakis)-(p-sulfonatophenyl)porphyrin (TPPS) on pH-sensitive core-shell polyelectrolyte microcapsules (PECs) of poly(styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH). A key feature of this strategy is the use of template CaCO3 microparticles as a nucleation site endorsing inside-outside directional growth of porphyrin aggregates. Using this approach, TPPS self-assembly in positively charged PECs with CaCO3 (PAH/PSS)2PAH as a sequence of layers was successfully achieved using mild pH conditions (pH 3). Evidence for porphyrin aggregation was obtained by UV-vis with the characteristic absorption bands in PECs functionalized with porphyrins. Fluorescence lifetime imaging microscopy (FLIM) of the polyelectrolyte core-shell confirmed the presence of radially distributed needlelike structures sticking out from polyelectrolyte shells. Microscopic images also revealed a sequential process (adsorption, redistribution, and aggregation) for the directional growth (inside/outside) of TPPS aggregates, which highlights the importance of the core in the aggregation induction. Removing the CaCO3 core alters the porphyrin interaction in the PEC environment, and aggregate growth is no longer favored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA