Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(6): e0270456, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35749549

RESUMO

Three-dimensional tracking of cells is one of the most powerful methods to investigate multicellular phenomena, such as ontogenesis, tumor formation or wound healing. However, 3D tracking in a biological environment usually requires fluorescent labeling of the cells and elaborate equipment, such as automated light sheet or confocal microscopy. Here we present a simple method for 3D tracking large numbers of unlabeled cells in a collagen matrix. Using a small lensless imaging setup, consisting of an LED and a photo sensor only, we were able to simultaneously track ~3000 human neutrophil granulocytes in a collagen droplet within an unusually large field of view (>50 mm2) at a time resolution of 4 seconds and a spatial resolution of ~1.5 µm in xy- and ~30 µm in z-direction. The setup, which is small enough to fit into any conventional incubator, was used to investigate chemotaxis towards interleukin-8 (IL-8 or CXCL8) and N-formylmethionyl-leucyl-phenylalanine (fMLP). The influence of varying stiffness and pore size of the embedding collagen matrix could also be quantified. Furthermore, we demonstrate our setup to be capable of telling apart healthy neutrophils from those where a condition of inflammation was (I) induced by exposure to lipopolysaccharide (LPS) and (II) caused by a pre-existing asthma condition. Over the course of our experiments we have tracked more than 420.000 cells. The large cell numbers increase statistical relevance to not only quantify cellular behavior in research, but to make it suitable for future diagnostic applications, too.


Assuntos
Quimiotaxia , Neutrófilos , Colágeno , Humanos , Inflamação , N-Formilmetionina Leucil-Fenilalanina/farmacologia
2.
IEEE J Biomed Health Inform ; 19(5): 1734-46, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25296409

RESUMO

Content-based image retrieval (CBIR) is a search technique based on the similarity of visual features and has demonstrated potential benefits for medical diagnosis, education, and research. However, clinical adoption of CBIR is partially hindered by the difference between the computed image similarity and the user's search intent, the semantic gap, with the end result that relevant images with outlier features may not be retrieved. Furthermore, most CBIR algorithms do not provide intuitive explanations as to why the retrieved images were considered similar to the query (e.g., which subset of features were similar), hence, it is difficult for users to verify if relevant images, with a small subset of outlier features, were missed. Users, therefore, resort to examining irrelevant images and there are limited opportunities to discover these "missed" images. In this paper, we propose a new approach to medical CBIR by enabling a guided visual exploration of the search space through a tool, called visual analytics for medical image retrieval (VAMIR). The visual analytics approach facilitates interactive exploration of the entire dataset using the query image as a point-of-reference. We conducted a user study and several case studies to demonstrate the capabilities of VAMIR in the retrieval of computed tomography images and multimodality positron emission tomography and computed tomography images.


Assuntos
Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação/métodos , Interface Usuário-Computador , Bases de Dados Factuais , Humanos , Reconhecimento Automatizado de Padrão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA