Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496569

RESUMO

Colorectal cancer has been linked to chronic colitis and red meat consumption, which can increase colonic iron and heme. Heme oxygenase-1 ( Hmox1 ) metabolizes heme and releases ferrous iron, but its role in colonic tumorigenesis is not well-described. Recent studies suggest that ferroptosis, the iron-dependent form of cell death, protects against colonic tumorigenesis. Ferroptosis culminates in excessive lipid peroxidation that is constrained by the antioxidative glutathione pathway. We observed increased mucosal markers of ferroptosis and glutathione metabolism in the setting of murine and human colitis, as well as murine colonic neoplasia. We obtained similar results in murine and human colonic epithelial organoids exposed to heme and the ferroptosis activator erastin, especially induction of Hmox1 . RNA sequencing of colonic organoids from mice with deletion of intestinal epithelial Hmox1 (Hmox1 ΔIEC ) revealed increased ferroptosis and activated glutathione metabolism after heme exposure. In a colitis-associated cancer model we observed significantly fewer and smaller tumors in Hmox1 ΔIEC mice compared to littermate controls. Transcriptional profiling of Hmox1 ΔIEC tumors and tumor organoids revealed increased ferroptosis and oxidative stress markers in tumor epithelial cells. In total, our findings reveal ferroptosis as an important colitis-associated cancer signature pathway, and Hmox1 as a key regulator in the tumor microenvironment.

2.
Mucosal Immunol ; 16(6): 817-825, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37716510

RESUMO

Inflammatory diseases of the digestive tract, including inflammatory bowel disease, cause metabolic stress within mucosal tissue. Creatine is a key energetic regulator. We previously reported a loss of creatine kinases (CKs) and the creatine transporter expression in inflammatory bowel disease patient intestinal biopsy samples and that creatine supplementation was protective in a dextran sulfate sodium (DSS) colitis mouse model. In the present studies, we evaluated the role of CK loss in active inflammation using the DSS colitis model. Mice lacking expression of CK brain type/CK mitochondrial form (CKdKO) showed increased susceptibility to DSS colitis (weight loss, disease activity, permeability, colon length, and histology). In a broad cytokine profiling, CKdKO mice expressed near absent interferon gamma (IFN-γ) levels. We identified losses in IFN-γ production from CD4+ and CD8+ T cells isolated from CKdKO mice. Addback of IFN-γ during DSS treatment resulted in partial protection for CKdKO mice. Extensions of these studies identified basal stabilization of the transcription factor hypoxia-inducible factor in CKdKO splenocytes and pharmacological stabilization of hypoxia-inducible factor resulted in reduced IFN-γ production by control splenocytes. Thus, the loss of IFN-γ production by CD4+ and CD8+ T cells in CKdKO mice resulted in increased colitis susceptibility and indicates that CK is protective in active mucosal inflammation.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Creatina Quinase/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Creatina/metabolismo , Colite/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Interferon gama/metabolismo , Inflamação/metabolismo , Hipóxia/metabolismo , Sulfato de Dextrana/farmacologia , Colo/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Citocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA