RESUMO
Colorectal cancer (CRC) is the second deadliest cancer in the world. Besides APC and p53 alterations, the PI3K/AKT/MTOR and MAPK pathway are most commonly mutated in CRC. So far, no treatment options targeting these pathways are available in routine clinics for CRC patients. We systematically analyzed the response of CRC cells to the combination of small molecular inhibitors targeting the PI3K and MAPK pathways. We used CRC cells in 2D, 3D spheroid, collagen gel cultures and freshly isolated organoids for drug response studies. Readout for drug response was spheroid or organoid growth, spheroid outgrowth, metabolic activity, Western blotting and immunofluorescence. We found profound tumor cell destruction under treatment with a combination of Torin 1 (inhibiting mTOR), MK2206 (targeting AKT) and selumetinib (inhibiting MEK) in 3D but not in 2D. Induction of cell death was due to apoptosis. Western blot analysis revealed efficient drug action. Gedatolisib, a dual PI3K/mTOR inhibitor, could replace Torin1/MK2206 with similar efficiency. The presence of PI3K and/or RAS-RAF-MAPK pathway mutations accounted for treatment responsiveness. Here, we identified a novel, efficient therapy, which induced proliferation stop and tumor cell destruction in vitro based on the genetic background. These preclinical findings show promise to further test this combi-treatment in vivo in mice and to potentially develop a mutation specific targeted therapy for CRC patients.
Assuntos
Neoplasias do Colo , Quinases de Proteína Quinase Ativadas por Mitógeno , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , HumanosRESUMO
WNT2 acts as a pro-angiogenic factor in placental vascularization and increases angiogenesis in liver sinusoidal endothelial cells (ECs) and other ECs. Increased WNT2 expression is detectable in many carcinomas and participates in tumor progression. In human colorectal cancer (CRC), WNT2 is selectively elevated in cancer-associated fibroblasts (CAFs), leading to increased invasion and metastasis. However, if there is a role for WNT2 in colon cancer, angiogenesis was not addressed so far. We demonstrate that WNT2 enhances EC migration/invasion, while it induces canonical WNT signaling in a small subset of cells. Knockdown of WNT2 in CAFs significantly reduced angiogenesis in a physiologically relevant assay, which allows precise assessment of key angiogenic properties. In line with these results, expression of WNT2 in otherwise WNT2-devoid skin fibroblasts led to increased angiogenesis. In CRC xenografts, WNT2 overexpression resulted in enhanced vessel density and tumor volume. Moreover, WNT2 expression correlates with vessel markers in human CRC. Secretome profiling of CAFs by mass spectrometry and cytokine arrays revealed that proteins associated with pro-angiogenic functions are elevated by WNT2. These included extracellular matrix molecules, ANG-2, IL-6, G-CSF, and PGF. The latter three increased angiogenesis. Thus, stromal-derived WNT2 elevates angiogenesis in CRC by shifting the balance towards pro-angiogenic signals.