Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechniques ; 72(2): 60-64, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35037474

RESUMO

Museum specimens and histologically fixed material are valuable samples for the study of historical soft tissues and represent a possible pathogen-specific source for retrospective molecular investigations. However, current methods for molecular analysis are inherently destructive, posing a dilemma between performing a study with the available technology, thus damaging the sample, and conserving the material for future investigations. Here the authors present the first tests of a non-destructive alternative that facilitates genetic analysis of fixed wet tissues while avoiding tissue damage. The authors extracted DNA from the fixed tissues as well as their embedding fixative solution, to quantify the DNA that was transferred to the liquid component. The results show that human historical DNA can be retrieved from the fixative material of medical specimens and provide new options for sampling valuable collections.


Assuntos
DNA , Preservação Biológica , DNA/genética , Fixadores , Humanos , Preservação Biológica/métodos , Estudos Retrospectivos , Análise de Sequência de DNA/métodos
2.
Am J Biol Anthropol ; 179(2): 307-313, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36790695

RESUMO

Ancient Egyptian remains have been of interest for anthropological research for decades. Despite many investigations, the ritual vessels for the internal organs removed during body preparation-liver, lungs, stomach, and intestines, of Egyptian mummies are rarely used for palaeopathological or medical investigations. These artifacts, commonly referred to as canopic jars, are the perfect combination of cultural and biological material and present an untapped resource for both Egyptological and medical fields. Nevertheless, technical challenges associated with this archeological material have prevented the application of current ancient DNA techniques for both the characterization of human and pathogenic DNA. We present shotgun-sequenced metagenomic profiles and ancient DNA degradation patterns from multiple canopic jars sampled from several European museum collections and enumerate current limitations and possible solutions for the future analysis of similar material. This is the first-ever recorded evidence of ancient human DNA found in Ancient Egyptian canopic jars and the first associated metagenomic description of bacterial taxa in these funerary artifacts. OBJECTIVES: In this study, our objectives were to characterize the metagenomic profile of the Ancient Egyptian funerary vessels known as canopic jars to retrieve endogenous ancient human DNA, reconstruct ancient microbial communities, and identify possible pathogens that could shed light on disease states of individuals from the past. METHODS: We applied ancient DNA techniques on 140 canopic jars to extract DNA and generate whole-genome sequencing libraries for the analysis of both human and bacterial DNA. The samples were obtained from museum collections in Berlin (DE), Burgdorf (DE), Leiden (NE), Manchester (UK), Munich (DE), St. Gallen (CH), Turin (IT), and Zagreb (HR). RESULTS: Here we describe the first isolated DNA from the Egyptian artifacts that hold human viscera. No previous work was ever conducted on such material, which led to the first characterization of human DNA from Ancient Egyptian canopic jars and the profiling of the complex bacterial composition of this highly degraded, challenging, organic material. However, the DNA recovered was not of enough quality to confidently characterize bacterial taxa associated with infectious diseases, nor exclusive bacterial members of the human microbiome. DISCUSSION: In summary, we present the first genomic survey of the visceral content of Ancient Egyptian funerary artifacts and demonstrate the limitations of current molecular methods to analyze canopic jars, such as the incomplete history of the objects or the presence of uncharacterized compounds that can hamper the recovery of DNA. Our work highlights the main challenges and caveats when working with such complicated archeological material - and offers sampling recommendations for similarly complex future studies, such as incrementing the amount of starting material and sampling from the less exposed parts of the jar content. This is the first-ever recorded evidence of ancient human DNA found in Ancient Egyptian canopic jars, and our results open new avenues in the study of neglected archeological artifacts.


Assuntos
DNA Antigo , Múmias , Humanos , Egito , Múmias/patologia , Pulmão , Sequência de Bases
3.
BMC Biol ; 19(1): 220, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610848

RESUMO

BACKGROUND: Hansen's disease (leprosy), widespread in medieval Europe, is today mainly prevalent in tropical and subtropical regions with around 200,000 new cases reported annually. Despite its long history and appearance in historical records, its origins and past dissemination patterns are still widely unknown. Applying ancient DNA approaches to its major causative agent, Mycobacterium leprae, can significantly improve our understanding of the disease's complex history. Previous studies have identified a high genetic continuity of the pathogen over the last 1500 years and the existence of at least four M. leprae lineages in some parts of Europe since the Early Medieval period. RESULTS: Here, we reconstructed 19 ancient M. leprae genomes to further investigate M. leprae's genetic variation in Europe, with a dedicated focus on bacterial genomes from previously unstudied regions (Belarus, Iberia, Russia, Scotland), from multiple sites in a single region (Cambridgeshire, England), and from two Iberian leprosaria. Overall, our data confirm the existence of similar phylogeographic patterns across Europe, including high diversity in leprosaria. Further, we identified a new genotype in Belarus. By doubling the number of complete ancient M. leprae genomes, our results improve our knowledge of the past phylogeography of M. leprae and reveal a particularly high M. leprae diversity in European medieval leprosaria. CONCLUSIONS: Our findings allow us to detect similar patterns of strain diversity across Europe with branch 3 as the most common branch and the leprosaria as centers for high diversity. The higher resolution of our phylogeny tree also refined our understanding of the interspecies transfer between red squirrels and humans pointing to a late antique/early medieval transmission. Furthermore, with our new estimates on the past population diversity of M. leprae, we gained first insights into the disease's global history in relation to major historic events such as the Roman expansion or the beginning of the regular transatlantic long distance trade. In summary, our findings highlight how studying ancient M. leprae genomes worldwide improves our understanding of leprosy's global history and can contribute to current models of M. leprae's worldwide dissemination, including interspecies transmissions.


Assuntos
Mycobacterium leprae , Europa (Continente) , Genoma Bacteriano/genética , Humanos , Hanseníase/genética , Mycobacterium leprae/genética , Dinâmica Populacional
4.
Bioinformatics ; 37(20): 3652-3653, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33890614

RESUMO

MOTIVATION: In ancient DNA research, the authentication of ancient samples based on specific features remains a crucial step in data analysis. Because of this central importance, researchers lacking deeper programming knowledge should be able to run a basic damage authentication analysis. Such software should be user-friendly and easy to integrate into an analysis pipeline. RESULTS: DamageProfiler is a Java-based, stand-alone software to determine damage patterns in ancient DNA. The results are provided in various file formats and plots for further processing. DamageProfiler has an intuitive graphical as well as command line interface that allows the tool to be easily embedded into an analysis pipeline. AVAILABILITY AND IMPLEMENTATION: All of the source code is freely available on GitHub (https://github.com/Integrative-Transcriptomics/DamageProfiler). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

5.
PeerJ ; 9: e10947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777521

RESUMO

The broadening utilisation of ancient DNA to address archaeological, palaeontological, and biological questions is resulting in a rising diversity in the size of laboratories and scale of analyses being performed. In the context of this heterogeneous landscape, we present an advanced, and entirely redesigned and extended version of the EAGER pipeline for the analysis of ancient genomic data. This Nextflow pipeline aims to address three main themes: accessibility and adaptability to different computing configurations, reproducibility to ensure robust analytical standards, and updating the pipeline to the latest routine ancient genomic practices. The new version of EAGER has been developed within the nf-core initiative to ensure high-quality software development and maintenance support; contributing to a long-term life-cycle for the pipeline. nf-core/eager will assist in ensuring that a wider range of ancient DNA analyses can be applied by a diverse range of research groups and fields.

6.
Biotechniques ; 69(6): 455-459, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33135465

RESUMO

In ancient DNA research, the degraded nature of the samples generally results in poor yields of highly fragmented DNA; targeted DNA enrichment is thus required to maximize research outcomes. The three commonly used methods - array-based hybridization capture and in-solution capture using either RNA or DNA baits - have different characteristics that may influence the capture efficiency, specificity and reproducibility. Here we compare their performance in enriching pathogen DNA of Mycobacterium leprae and Treponema pallidum from 11 ancient and 19 modern samples. We find that in-solution approaches are the most effective method in ancient and modern samples of both pathogens and that RNA baits usually perform better than DNA baits.


Assuntos
DNA Antigo/análise , Mycobacterium leprae/genética , Hibridização de Ácido Nucleico/métodos , Treponema pallidum/genética , Humanos , Reprodutibilidade dos Testes
7.
Philos Trans R Soc Lond B Biol Sci ; 375(1812): 20190569, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33012225

RESUMO

Yersinia pestis, the causative agent of plague, has been prevalent among humans for at least 5000 years, being accountable for several devastating epidemics in history, including the Black Death. Analyses of the genetic diversity of ancient strains of Y. pestis have shed light on the mechanisms of evolution and the spread of plague in Europe. However, many questions regarding the origins of the pathogen and its long persistence in Europe are still unresolved, especially during the late medieval time period. To address this, we present four newly assembled Y. pestis genomes from Eastern Europe (Poland and Southern Russia), dating from the fifteenth to eighteenth century AD. The analysis of polymorphisms in these genomes and their phylogenetic relationships with other ancient and modern Y. pestis strains may suggest several independent introductions of plague into Eastern Europe or its persistence in different reservoirs. Furthermore, with the reconstruction of a partial Y. pestis genome from rat skeletal remains found in a Polish ossuary, we were able to identify a potential animal reservoir in late medieval Europe. Overall, our results add new information concerning Y. pestis transmission and its evolutionary history in Eastern Europe. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.


Assuntos
Reservatórios de Doenças/veterinária , Genoma Bacteriano , Peste/história , Yersinia pestis/genética , Animais , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , Filogenia , Peste/transmissão , Polônia , Ratos , Doenças dos Roedores/microbiologia , Federação Russa , Yersinia pestis/classificação
8.
Philos Trans R Soc Lond B Biol Sci ; 375(1812): 20190572, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33012235

RESUMO

Smallpox, caused by the variola virus (VARV), was a highly virulent disease with high mortality rates causing a major threat for global human health until its successful eradication in 1980. Despite previously published historic and modern VARV genomes, its past dissemination and diversity remain debated. To understand the evolutionary history of VARV with respect to historic and modern VARV genetic variation in Europe, we sequenced a VARV genome from a well-described eighteenth-century case from England (specimen P328). In our phylogenetic analysis, the new genome falls between the modern strains and another historic strain from Lithuania, supporting previous claims of larger diversity in early modern Europe compared to the twentieth century. Our analyses also resolve a previous controversy regarding the common ancestor between modern and historic strains by confirming a later date around the seventeenth century. Overall, our results point to the benefit of historic genomes for better resolution of past VARV diversity and highlight the value of such historic genomes from around the world to further understand the evolutionary history of smallpox as well as related diseases. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.


Assuntos
Evolução Molecular , Genoma Viral , Varíola/história , Vírus da Varíola/genética , Animais , Inglaterra , História do Século XVIII , Humanos , Lactente , Museus , Filogenia
9.
BMC Biol ; 18(1): 108, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859198

RESUMO

BACKGROUND: Recent advances in sequencing have facilitated large-scale analyses of the metagenomic composition of different samples, including the environmental microbiome of air, water, and soil, as well as the microbiome of living humans and other animals. Analyses of the microbiome of ancient human samples may provide insights into human health and disease, as well as pathogen evolution, but the field is still in its very early stages and considered highly challenging. RESULTS: The metagenomic and pathogen content of Egyptian mummified individuals from different time periods was investigated via genetic analysis of the microbial composition of various tissues. The analysis of the dental calculus' microbiome identified Red Complex bacteria, which are correlated with periodontal diseases. From bone and soft tissue, genomes of two ancient pathogens, a 2200-year-old Mycobacterium leprae strain and a 2000-year-old human hepatitis B virus, were successfully reconstructed. CONCLUSIONS: The results show the reliability of metagenomic studies on Egyptian mummified individuals and the potential to use them as a source for the extraction of ancient pathogen DNA.


Assuntos
Genoma Bacteriano , Genoma Viral , Vírus da Hepatite B/genética , Múmias/microbiologia , Mycobacterium leprae/genética , DNA Antigo/análise , Egito , Humanos , Metagenômica , Microbiota , Múmias/virologia , Análise de Sequência de DNA
10.
Curr Biol ; 30(19): 3788-3803.e10, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32795443

RESUMO

Syphilis is a globally re-emerging disease, which has marked European history with a devastating epidemic at the end of the 15th century. Together with non-venereal treponemal diseases, like bejel and yaws, which are found today in subtropical and tropical regions, it currently poses a substantial health threat worldwide. The origins and spread of treponemal diseases remain unresolved, including syphilis' potential introduction into Europe from the Americas. Here, we present the first genetic data from archaeological human remains reflecting a high diversity of Treponema pallidum in early modern Europe. Our study demonstrates that a variety of strains related to both venereal syphilis and yaws-causing T. pallidum subspecies were already present in Northern Europe in the early modern period. We also discovered a previously unknown T. pallidum lineage recovered as a sister group to yaws- and bejel-causing lineages. These findings imply a more complex pattern of geographical distribution and etiology of early treponemal epidemics than previously understood.


Assuntos
DNA Antigo/análise , Genoma Bacteriano/genética , Treponema pallidum/genética , Arqueologia , Europa (Continente) , Variação Genética/genética , História do Século XV , História Medieval , Humanos , Sífilis/genética , Sífilis/história , Sífilis/microbiologia , Treponema pallidum/metabolismo , Bouba/genética , Bouba/história , Bouba/microbiologia
11.
Anat Rec (Hoboken) ; 303(12): 3085-3095, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31837087

RESUMO

Artificial mummification has been used since antiquity and is best known from ancient Egypt. Despite ancient Egyptian mummies being studied for several decades, the mummification techniques of that time are not well understood. Modern mummification experiments involving animal and human tissues have contributed additional insights relevant to a broad field of research. In the current study, we present follow-up results of an experiment on artificial mummification, which began in 2009. A human leg was artificially mummified and monitored for almost a year with histological, molecular, and radiological techniques. Since then, it has remained in a dry, natron salt blend for 9 years. The current analyses show further progression of dehydration and tissue alterations, as well as DNA degradation, suggesting an ongoing process. Our results add new insights into the mechanisms of tissue mummification. Taking into account that the process is still ongoing, further research is required, including a re-evaluation of the human leg in the future.


Assuntos
Embalsamamento/métodos , Perna (Membro)/patologia , Múmias/patologia , Humanos , Perna (Membro)/diagnóstico por imagem , Múmias/diagnóstico por imagem , Tomografia Computadorizada por Raios X
12.
Sci Rep ; 9(1): 10700, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31417104

RESUMO

The cave bear (Ursus spelaeus) is one of the Late Pleistocene megafauna species that faced extinction at the end of the last ice age. Although it is represented by one of the largest fossil records in Europe and has been subject to several interdisciplinary studies including palaeogenetic research, its fate remains highly controversial. Here, we used a combination of hybridisation capture and next generation sequencing to reconstruct 59 new complete cave bear mitochondrial genomes (mtDNA) from 14 sites in Western, Central and Eastern Europe. In a Bayesian phylogenetic analysis, we compared them to 64 published cave bear mtDNA sequences to reconstruct the population dynamics and phylogeography during the Late Pleistocene. We found five major mitochondrial DNA lineages resulting in a noticeably more complex biogeography of the European lineages during the last 50,000 years than previously assumed. Furthermore, our calculated effective female population sizes suggest a drastic cave bear population decline starting around 40,000 years ago at the onset of the Aurignacian, coinciding with the spread of anatomically modern humans in Europe. Thus, our study supports a potential significant human role in the general extinction and local extirpation of the European cave bear and illuminates the fate of this megafauna species.


Assuntos
Genoma Mitocondrial , Ursidae/genética , Animais , Teorema de Bayes , DNA Mitocondrial , Europa (Continente) , Extinção Biológica , Feminino , Fósseis , Filogenia , Filogeografia , Densidade Demográfica , Análise de Sequência de DNA
13.
Genes (Basel) ; 9(9)2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30200350

RESUMO

The reconstruction of ancient metagenomes from archaeological material, and their implication in human health and evolution, is one of the most recent advances in paleomicrobiological studies. However, as for all ancient DNA (aDNA) studies, environmental and laboratory contamination need to be specifically addressed. Here we attempted to reconstruct the tissue-specific metagenomes of a 42,000-year-old, permafrost-preserved woolly mammoth calf through shotgun high-throughput sequencing. We analyzed the taxonomic composition of all tissue samples together with environmental and non-template experimental controls and compared them to metagenomes obtained from permafrost and elephant fecal samples. Preliminary results suggested the presence of tissue-specific metagenomic signals. We identified bacterial species that were present in only one experimental sample, absent from controls, and consistent with the nature of the samples. However, we failed to further authenticate any of these signals and conclude that, even when experimental samples are distinct from environmental and laboratory controls, this does not necessarily indicate endogenous presence of ancient host-associated microbiomic signals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA