Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ISME J ; 17(10): 1680-1692, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37468676

RESUMO

Microbial dissimilatory sulfur metabolism utilizing dissimilatory sulfite reductases (Dsr) influenced the biochemical sulfur cycle during Earth's history and the Dsr pathway is thought to be an ancient metabolic process. Here we performed comparative genomics, phylogenetic, and synteny analyses of several Dsr proteins involved in or associated with the Dsr pathway across over 195,000 prokaryotic metagenomes. The results point to an archaeal origin of the minimal DsrABCMK(N) protein set, having as primordial function sulfite reduction. The acquisition of additional Dsr proteins (DsrJOPT) increased the Dsr pathway complexity. Archaeoglobus would originally possess the archaeal-type Dsr pathway and the archaeal DsrAB proteins were replaced with the bacterial reductive-type version, possibly at the same time as the acquisition of the QmoABC and DsrD proteins. Further inventions of two Qmo complex types, which are more spread than previously thought, allowed microorganisms to use sulfate as electron acceptor. The ability to use the Dsr pathway for sulfur oxidation evolved at least twice, with Chlorobi and Proteobacteria being extant descendants of these two independent adaptations.


Assuntos
Sulfito de Hidrogênio Redutase , Proteínas , Filogenia , Oxirredução , Sulfito de Hidrogênio Redutase/genética , Sulfito de Hidrogênio Redutase/metabolismo , Proteínas/metabolismo , Sulfatos/metabolismo , Sulfitos , Enxofre/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética
2.
Microb Genom ; 7(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34241589

RESUMO

Current methods in comparative genomic analyses for metabolic potential prediction of proteins involved in, or associated with the Dsr (dissimilatory sulphite reductase)-dependent dissimilatory sulphur metabolism are both time-intensive and computationally challenging, especially when considering metagenomic data. We developed DiSCo, a Dsr-dependent dissimilatory sulphur metabolism classification tool, which automatically identifies and classifies the protein type from sequence data. It takes user-supplied protein sequences and lists the identified proteins and their classification in terms of protein family and predicted type. It can also extract the sequence data from user-input to serve as basis for additional downstream analyses. DiSCo provides the metabolic functional prediction of proteins involved in Dsr-dependent dissimilatory sulphur metabolism with high levels of accuracy in a fast manner. We ran DiSCo against a dataset composed of over 190 thousand (meta)genomic records and efficiently mapped Dsr-dependent dissimilatory sulphur proteins in 1798 lineages across both prokaryotic domains. This allowed the identification of new micro-organisms belonging to Thaumarchaeota and Spirochaetes lineages with the metabolic potential to use the Dsr-pathway for energy conservation. DiSCo is implemented in Perl 5 and freely available under the GNU GPLv3 at https://github.com/Genome-Evolution-and-Ecology-Group-GEEG/DiSCo.


Assuntos
Archaea/genética , Bactérias/genética , Biologia Computacional/métodos , Sulfito de Hidrogênio Redutase/metabolismo , Enxofre/metabolismo , Archaea/enzimologia , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Arqueal/genética , Genoma Bacteriano/genética , Genômica/métodos , Sulfito de Hidrogênio Redutase/genética , Oxirredução
3.
Nat Microbiol ; 5(11): 1428-1438, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32807893

RESUMO

Dissimilatory sulfate reduction (DSR)-an important reaction in the biogeochemical sulfur cycle-has been dated to the Palaeoarchaean using geological evidence, but its evolutionary history is poorly understood. Several lineages of bacteria carry out DSR, but in archaea only Archaeoglobus, which acquired DSR genes from bacteria, has been proven to catalyse this reaction. We investigated substantial rates of sulfate reduction in acidic hyperthermal terrestrial springs of the Kamchatka Peninsula and attributed DSR in this environment to Crenarchaeota in the Vulcanisaeta genus. Community profiling, coupled with radioisotope and growth experiments and proteomics, confirmed DSR by 'Candidatus Vulcanisaeta moutnovskia', which has all of the required genes. Other cultivated Thermoproteaceae were briefly reported to use sulfate for respiration but we were unable to detect DSR in these isolates. Phylogenetic studies suggest that DSR is rare in archaea and that it originated in Vulcanisaeta, independent of Archaeoglobus, by separate acquisition of qmoABC genes phylogenetically related to bacterial hdrA genes.


Assuntos
Evolução Molecular , Sulfatos/metabolismo , Thermoproteaceae/metabolismo , Archaea/classificação , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Genoma Arqueal/genética , Fontes Termais/química , Fontes Termais/microbiologia , Microbiota , Família Multigênica , Oxirredução , Filogenia , Compostos de Enxofre/metabolismo , Thermoproteaceae/classificação , Thermoproteaceae/genética , Thermoproteaceae/crescimento & desenvolvimento
4.
Life (Basel) ; 10(3)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110893

RESUMO

Research on the origin of life is highly heterogeneous. After a peculiar historical development, it still includes strongly opposed views which potentially hinder progress. In the 1st Interdisciplinary Origin of Life Meeting, early-career researchers gathered to explore the commonalities between theories and approaches, critical divergence points, and expectations for the future. We find that even though classical approaches and theories-e.g. bottom-up and top-down, RNA world vs. metabolism-first-have been prevalent in origin of life research, they are ceasing to be mutually exclusive and they can and should feed integrating approaches. Here we focus on pressing questions and recent developments that bridge the classical disciplines and approaches, and highlight expectations for future endeavours in origin of life research.

5.
Nat Commun ; 9(1): 5448, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575735

RESUMO

The bioenergetics of anaerobic metabolism frequently relies on redox loops performed by membrane complexes with substrate- and quinone-binding sites on opposite sides of the membrane. However, in sulfate respiration (a key process in the biogeochemical sulfur cycle), the substrate- and quinone-binding sites of the QrcABCD complex are periplasmic, and their role in energy conservation has not been elucidated. Here we show that the QrcABCD complex of Desulfovibrio vulgaris is electrogenic, as protons and electrons required for quinone reduction are extracted from opposite sides of the membrane, with a H+/e- ratio of 1. Although the complex does not act as a H+-pump, QrcD may include a conserved proton channel leading from the N-side to the P-side menaquinone pocket. Our work provides evidence of how energy is conserved during dissimilatory sulfate reduction, and suggests mechanisms behind the functions of related bacterial respiratory complexes in other bioenergetic contexts.


Assuntos
Desulfovibrio vulgaris/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Sulfatos/metabolismo , Vitamina K 2/metabolismo , Anaerobiose , Respiração Celular , Lipossomos , Potenciais da Membrana , Oxirredução , Prótons
7.
Nat Microbiol ; 1: 16034, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27572645

RESUMO

The nature of the host that acquired the mitochondrion at the eukaryote origin is an important microbial evolutionary issue. Modern phylogenetics indicates that the host was an archaeon. The metagenome sequence of Candidatus Lokiarchaeon has identified it as being the closest relative of the host yet known. Here, we report comparative genomic evidence indicating that Lokiarchaeon is hydrogen dependent, as one theory for the eukaryote origin-the hydrogen hypothesis-predicts for the host lineage.


Assuntos
Archaea/genética , Archaea/metabolismo , Hidrogênio/metabolismo , Redes e Vias Metabólicas/genética , Biologia Computacional , Genômica
8.
Nat Microbiol ; 1(9): 16116, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27562259

RESUMO

The concept of a last universal common ancestor of all cells (LUCA, or the progenote) is central to the study of early evolution and life's origin, yet information about how and where LUCA lived is lacking. We investigated all clusters and phylogenetic trees for 6.1 million protein coding genes from sequenced prokaryotic genomes in order to reconstruct the microbial ecology of LUCA. Among 286,514 protein clusters, we identified 355 protein families (∼0.1%) that trace to LUCA by phylogenetic criteria. Because these proteins are not universally distributed, they can shed light on LUCA's physiology. Their functions, properties and prosthetic groups depict LUCA as anaerobic, CO2-fixing, H2-dependent with a Wood-Ljungdahl pathway, N2-fixing and thermophilic. LUCA's biochemistry was replete with FeS clusters and radical reaction mechanisms. Its cofactors reveal dependence upon transition metals, flavins, S-adenosyl methionine, coenzyme A, ferredoxin, molybdopterin, corrins and selenium. Its genetic code required nucleoside modifications and S-adenosyl methionine-dependent methylations. The 355 phylogenies identify clostridia and methanogens, whose modern lifestyles resemble that of LUCA, as basal among their respective domains. LUCA inhabited a geochemically active environment rich in H2, CO2 and iron. The data support the theory of an autotrophic origin of life involving the Wood-Ljungdahl pathway in a hydrothermal setting.


Assuntos
Archaea/genética , Bactérias/genética , Genoma Microbiano/genética , Proteínas/genética , Anaerobiose , Archaea/fisiologia , Processos Autotróficos , Fenômenos Fisiológicos Bacterianos , Evolução Biológica , Análise por Conglomerados , Metilação de DNA , Ecologia , Ecossistema , Origem da Vida , Filogenia , Células Procarióticas , Proteínas/classificação
9.
Bioessays ; 38(9): 850-6, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27339178

RESUMO

Metagenomics bears upon all aspects of microbiology, including our understanding of mitochondrial and eukaryote origin. Recently, ribosomal protein phylogenies show the eukaryote host lineage - the archaeal lineage that acquired the mitochondrion - to branch within the archaea. Metagenomic studies are now uncovering new archaeal lineages that branch more closely to the host than any cultivated archaea do. But how do they grow? Carbon and energy metabolism as pieced together from metagenome assemblies of these new archaeal lineages, such as the Deep Sea Archaeal Group (including Lokiarchaeota) and Bathyarchaeota, do not match the physiology of any cultivated microbes. Understanding how these new lineages live in their environment is important, and might hold clues about how mitochondria arose and how the eukaryotic lineage got started. Here we look at these exciting new metagenomic studies, what they say about archaeal physiology in modern environments, how they impact views on host-mitochondrion physiological interactions at eukaryote origin.


Assuntos
Archaea/genética , Metabolismo Energético , Eucariotos/genética , Metagenômica , Mitocôndrias , Filogenia , Eucariotos/metabolismo
10.
Microb Cell ; 3(12): 582-587, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-28357330

RESUMO

Genomes record their own history. But if we want to look all the way back to life's beginnings some 4 billion years ago, the record of microbial evolution that is preserved in prokaryotic genomes is not easy to read. Microbiology has a lot in common with geology in that regard. Geologists know that plate tectonics and erosion have erased much of the geological record, with ancient rocks being truly rare. The same is true of microbes. Lateral gene transfer (LGT) and sequence divergence have erased much of the evolutionary record that was once written in genomes, and it is not obvious which genes among sequenced genomes are genuinely ancient. Which genes trace to the last universal ancestor, LUCA? The classical approach has been to look for genes that are universally distributed. Another approach is to make all trees for all genes, and sift out the trees where signals have been overwritten by LGT. What is left ought to be ancient. If we do that, what do we find?

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA